使用通过主成分分析获得的值的双图,可以探索构成每个主成分的解释变量。 线性判别分析也可以吗?
提供的示例使用的数据是“Edgar Anderson 的虹膜数据”(http://en.wikipedia.org/wiki/Iris_flower_data_set)。这是虹膜数据:
id SLength SWidth PLength PWidth species
1 5.1 3.5 1.4 .2 setosa
2 4.9 3.0 1.4 .2 setosa
3 4.7 3.2 1.3 .2 setosa
4 4.6 3.1 1.5 .2 setosa
5 5.0 3.6 1.4 .2 setosa
6 5.4 3.9 1.7 .4 setosa
7 4.6 3.4 1.4 .3 setosa
8 5.0 3.4 1.5 .2 setosa
9 4.4 2.9 1.4 .2 setosa
10 4.9 3.1 1.5 .1 setosa
11 5.4 3.7 1.5 .2 setosa
12 4.8 3.4 1.6 .2 setosa
13 4.8 3.0 1.4 .1 setosa
14 4.3 3.0 1.1 .1 setosa
15 5.8 4.0 1.2 .2 setosa
16 5.7 4.4 1.5 .4 setosa
17 5.4 3.9 1.3 .4 setosa
18 5.1 3.5 1.4 .3 setosa
19 5.7 3.8 1.7 .3 setosa
20 5.1 3.8 1.5 .3 setosa
21 5.4 3.4 1.7 .2 setosa
22 5.1 3.7 1.5 .4 setosa
23 4.6 3.6 1.0 .2 setosa
24 5.1 3.3 1.7 .5 setosa
25 4.8 3.4 1.9 .2 setosa
26 5.0 3.0 1.6 .2 setosa
27 5.0 3.4 1.6 .4 setosa
28 5.2 3.5 1.5 .2 setosa
29 5.2 3.4 1.4 .2 setosa
30 4.7 3.2 1.6 .2 setosa
31 4.8 3.1 1.6 .2 setosa
32 5.4 3.4 1.5 .4 setosa
33 5.2 4.1 1.5 .1 setosa
34 5.5 4.2 1.4 .2 setosa
35 4.9 3.1 1.5 .2 setosa
36 5.0 3.2 1.2 .2 setosa
37 5.5 3.5 1.3 .2 setosa
38 4.9 3.6 1.4 .1 setosa
39 4.4 3.0 1.3 .2 setosa
40 5.1 3.4 1.5 .2 setosa
41 5.0 3.5 1.3 .3 setosa
42 4.5 2.3 1.3 .3 setosa
43 4.4 3.2 1.3 .2 setosa
44 5.0 3.5 1.6 .6 setosa
45 5.1 3.8 1.9 .4 setosa
46 4.8 3.0 1.4 .3 setosa
47 5.1 3.8 1.6 .2 setosa
48 4.6 3.2 1.4 .2 setosa
49 5.3 3.7 1.5 .2 setosa
50 5.0 3.3 1.4 .2 setosa
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor
54 5.5 2.3 4.0 1.3 versicolor
55 6.5 2.8 4.6 1.5 versicolor
56 5.7 2.8 4.5 1.3 versicolor
57 6.3 3.3 4.7 1.6 versicolor
58 4.9 2.4 3.3 1.0 versicolor
59 6.6 2.9 4.6 1.3 versicolor
60 5.2 2.7 3.9 1.4 versicolor
61 5.0 2.0 3.5 1.0 versicolor
62 5.9 3.0 4.2 1.5 versicolor
63 6.0 2.2 4.0 1.0 versicolor
64 6.1 2.9 4.7 1.4 versicolor
65 5.6 2.9 3.6 1.3 versicolor
66 6.7 3.1 4.4 1.4 versicolor
67 5.6 3.0 4.5 1.5 versicolor
68 5.8 2.7 4.1 1.0 versicolor
69 6.2 2.2 4.5 1.5 versicolor
70 5.6 2.5 3.9 1.1 versicolor
71 5.9 3.2 4.8 1.8 versicolor
72 6.1 2.8 4.0 1.3 versicolor
73 6.3 2.5 4.9 1.5 versicolor
74 6.1 2.8 4.7 1.2 versicolor
75 6.4 2.9 4.3 1.3 versicolor
76 6.6 3.0 4.4 1.4 versicolor
77 6.8 2.8 4.8 1.4 versicolor
78 6.7 3.0 5.0 1.7 versicolor
79 6.0 2.9 4.5 1.5 versicolor
80 5.7 2.6 3.5 1.0 versicolor
81 5.5 2.4 3.8 1.1 versicolor
82 5.5 2.4 3.7 1.0 versicolor
83 5.8 2.7 3.9 1.2 versicolor
84 6.0 2.7 5.1 1.6 versicolor
85 5.4 3.0 4.5 1.5 versicolor
86 6.0 3.4 4.5 1.6 versicolor
87 6.7 3.1 4.7 1.5 versicolor
88 6.3 2.3 4.4 1.3 versicolor
89 5.6 3.0 4.1 1.3 versicolor
90 5.5 2.5 4.0 1.3 versicolor
91 5.5 2.6 4.4 1.2 versicolor
92 6.1 3.0 4.6 1.4 versicolor
93 5.8 2.6 4.0 1.2 versicolor
94 5.0 2.3 3.3 1.0 versicolor
95 5.6 2.7 4.2 1.3 versicolor
96 5.7 3.0 4.2 1.2 versicolor
97 5.7 2.9 4.2 1.3 versicolor
98 6.2 2.9 4.3 1.3 versicolor
99 5.1 2.5 3.0 1.1 versicolor
100 5.7 2.8 4.1 1.3 versicolor
101 6.3 3.3 6.0 2.5 virginica
102 5.8 2.7 5.1 1.9 virginica
103 7.1 3.0 5.9 2.1 virginica
104 6.3 2.9 5.6 1.8 virginica
105 6.5 3.0 5.8 2.2 virginica
106 7.6 3.0 6.6 2.1 virginica
107 4.9 2.5 4.5 1.7 virginica
108 7.3 2.9 6.3 1.8 virginica
109 6.7 2.5 5.8 1.8 virginica
110 7.2 3.6 6.1 2.5 virginica
111 6.5 3.2 5.1 2.0 virginica
112 6.4 2.7 5.3 1.9 virginica
113 6.8 3.0 5.5 2.1 virginica
114 5.7 2.5 5.0 2.0 virginica
115 5.8 2.8 5.1 2.4 virginica
116 6.4 3.2 5.3 2.3 virginica
117 6.5 3.0 5.5 1.8 virginica
118 7.7 3.8 6.7 2.2 virginica
119 7.7 2.6 6.9 2.3 virginica
120 6.0 2.2 5.0 1.5 virginica
121 6.9 3.2 5.7 2.3 virginica
122 5.6 2.8 4.9 2.0 virginica
123 7.7 2.8 6.7 2.0 virginica
124 6.3 2.7 4.9 1.8 virginica
125 6.7 3.3 5.7 2.1 virginica
126 7.2 3.2 6.0 1.8 virginica
127 6.2 2.8 4.8 1.8 virginica
128 6.1 3.0 4.9 1.8 virginica
129 6.4 2.8 5.6 2.1 virginica
130 7.2 3.0 5.8 1.6 virginica
131 7.4 2.8 6.1 1.9 virginica
132 7.9 3.8 6.4 2.0 virginica
133 6.4 2.8 5.6 2.2 virginica
134 6.3 2.8 5.1 1.5 virginica
135 6.1 2.6 5.6 1.4 virginica
136 7.7 3.0 6.1 2.3 virginica
137 6.3 3.4 5.6 2.4 virginica
138 6.4 3.1 5.5 1.8 virginica
139 6.0 3.0 4.8 1.8 virginica
140 6.9 3.1 5.4 2.1 virginica
141 6.7 3.1 5.6 2.4 virginica
142 6.9 3.1 5.1 2.3 virginica
143 5.8 2.7 5.1 1.9 virginica
144 6.8 3.2 5.9 2.3 virginica
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
使用 R 中的 iris 数据集的示例 PCA 双图(代码如下):
该图表明花瓣长度和花瓣宽度对于确定 PC1 分数和区分物种组很重要。setosa的花瓣更小,萼片更宽。
显然,通过绘制线性判别分析结果可以得出类似的结论,尽管我不确定 LDA 图呈现什么,因此是这个问题。轴是两个第一个线性判别式(LD1 99% 和 LD2 1% 的迹线)。红色向量的坐标是“线性判别系数”,也被描述为“缩放”(lda.fit$scaling:一个将观察值转换为判别函数的矩阵,归一化以使组内协方差矩阵是球形的)。“缩放”计算为diag(1/f1, , p)
和f1 is sqrt(diag(var(x - group.means[g, ])))
。数据可以投影到线性判别式上(使用 predict.lda)(下面的代码,如https://stackoverflow.com/a/17240647/742447所示)。将数据和预测变量绘制在一起,以便通过增加可以看到的预测变量来定义哪些物种(就像通常的 PCA 双图和上述 PCA 双图所做的那样):
从这个图中,萼片宽度、花瓣宽度和花瓣长度都对 LD1 做出了相似的贡献。正如预期的那样,setosa 的花瓣更小,萼片更宽。
没有内置的方法可以在 R 中从 LDA 绘制这样的双图,并且很少有在线讨论,这让我对这种方法持谨慎态度。
这个 LDA 图(见下面的代码)是否提供了对预测变量缩放分数的统计有效解释?
PCA 代码:
require(grid)
iris.pca <- prcomp(iris[,-5])
PC <- iris.pca
x="PC1"
y="PC2"
PCdata <- data.frame(obsnames=iris[,5], PC$x)
datapc <- data.frame(varnames=rownames(PC$rotation), PC$rotation)
mult <- min(
(max(PCdata[,y]) - min(PCdata[,y])/(max(datapc[,y])-min(datapc[,y]))),
(max(PCdata[,x]) - min(PCdata[,x])/(max(datapc[,x])-min(datapc[,x])))
)
datapc <- transform(datapc,
v1 = 1.6 * mult * (get(x)),
v2 = 1.6 * mult * (get(y))
)
datapc$length <- with(datapc, sqrt(v1^2+v2^2))
datapc <- datapc[order(-datapc$length),]
p <- qplot(data=data.frame(iris.pca$x),
main="PCA",
x=PC1,
y=PC2,
shape=iris$Species)
#p <- p + stat_ellipse(aes(group=iris$Species))
p <- p + geom_hline(aes(0), size=.2) + geom_vline(aes(0), size=.2)
p <- p + geom_text(data=datapc,
aes(x=v1, y=v2,
label=varnames,
shape=NULL,
linetype=NULL,
alpha=length),
size = 3, vjust=0.5,
hjust=0, color="red")
p <- p + geom_segment(data=datapc,
aes(x=0, y=0, xend=v1,
yend=v2, shape=NULL,
linetype=NULL,
alpha=length),
arrow=arrow(length=unit(0.2,"cm")),
alpha=0.5, color="red")
p <- p + coord_flip()
print(p)
LDA 代码
#Perform LDA analysis
iris.lda <- lda(as.factor(Species)~.,
data=iris)
#Project data on linear discriminants
iris.lda.values <- predict(iris.lda, iris[,-5])
#Extract scaling for each predictor and
data.lda <- data.frame(varnames=rownames(coef(iris.lda)), coef(iris.lda))
#coef(iris.lda) is equivalent to iris.lda$scaling
data.lda$length <- with(data.lda, sqrt(LD1^2+LD2^2))
scale.para <- 0.75
#Plot the results
p <- qplot(data=data.frame(iris.lda.values$x),
main="LDA",
x=LD1,
y=LD2,
shape=iris$Species)#+stat_ellipse()
p <- p + geom_hline(aes(0), size=.2) + geom_vline(aes(0), size=.2)
p <- p + theme(legend.position="none")
p <- p + geom_text(data=data.lda,
aes(x=LD1*scale.para, y=LD2*scale.para,
label=varnames,
shape=NULL, linetype=NULL,
alpha=length),
size = 3, vjust=0.5,
hjust=0, color="red")
p <- p + geom_segment(data=data.lda,
aes(x=0, y=0,
xend=LD1*scale.para, yend=LD2*scale.para,
shape=NULL, linetype=NULL,
alpha=length),
arrow=arrow(length=unit(0.2,"cm")),
color="red")
p <- p + coord_flip()
print(p)
LDA的结果如下
lda(as.factor(Species) ~ ., data = iris)
Prior probabilities of groups:
setosa versicolor virginica
0.3333333 0.3333333 0.3333333
Group means:
Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026
Coefficients of linear discriminants:
LD1 LD2
Sepal.Length 0.8293776 0.02410215
Sepal.Width 1.5344731 2.16452123
Petal.Length -2.2012117 -0.93192121
Petal.Width -2.8104603 2.83918785
Proportion of trace:
LD1 LD2
0.9912 0.0088