线性判别分析 (LDA) 中的标度值能否用于在线性判别式上绘制解释变量?

机器算法验证 r 主成分分析 多元分析 判别分析 双标图
2022-03-23 18:46:24

使用通过主成分分析获得的值的双图,可以探索构成每个主成分的解释变量。 线性判别分析也可以吗?

提供的示例使用的数据是“Edgar Anderson 的虹膜数据”(http://en.wikipedia.org/wiki/Iris_flower_data_set)。这是虹膜数据

  id  SLength   SWidth  PLength   PWidth species 

   1      5.1      3.5      1.4       .2 setosa 
   2      4.9      3.0      1.4       .2 setosa 
   3      4.7      3.2      1.3       .2 setosa 
   4      4.6      3.1      1.5       .2 setosa 
   5      5.0      3.6      1.4       .2 setosa 
   6      5.4      3.9      1.7       .4 setosa 
   7      4.6      3.4      1.4       .3 setosa 
   8      5.0      3.4      1.5       .2 setosa 
   9      4.4      2.9      1.4       .2 setosa 
  10      4.9      3.1      1.5       .1 setosa 
  11      5.4      3.7      1.5       .2 setosa 
  12      4.8      3.4      1.6       .2 setosa 
  13      4.8      3.0      1.4       .1 setosa 
  14      4.3      3.0      1.1       .1 setosa 
  15      5.8      4.0      1.2       .2 setosa 
  16      5.7      4.4      1.5       .4 setosa 
  17      5.4      3.9      1.3       .4 setosa 
  18      5.1      3.5      1.4       .3 setosa 
  19      5.7      3.8      1.7       .3 setosa 
  20      5.1      3.8      1.5       .3 setosa 
  21      5.4      3.4      1.7       .2 setosa 
  22      5.1      3.7      1.5       .4 setosa 
  23      4.6      3.6      1.0       .2 setosa 
  24      5.1      3.3      1.7       .5 setosa 
  25      4.8      3.4      1.9       .2 setosa 
  26      5.0      3.0      1.6       .2 setosa 
  27      5.0      3.4      1.6       .4 setosa 
  28      5.2      3.5      1.5       .2 setosa 
  29      5.2      3.4      1.4       .2 setosa 
  30      4.7      3.2      1.6       .2 setosa 
  31      4.8      3.1      1.6       .2 setosa 
  32      5.4      3.4      1.5       .4 setosa 
  33      5.2      4.1      1.5       .1 setosa 
  34      5.5      4.2      1.4       .2 setosa 
  35      4.9      3.1      1.5       .2 setosa 
  36      5.0      3.2      1.2       .2 setosa 
  37      5.5      3.5      1.3       .2 setosa 
  38      4.9      3.6      1.4       .1 setosa 
  39      4.4      3.0      1.3       .2 setosa 
  40      5.1      3.4      1.5       .2 setosa 
  41      5.0      3.5      1.3       .3 setosa 
  42      4.5      2.3      1.3       .3 setosa 
  43      4.4      3.2      1.3       .2 setosa 
  44      5.0      3.5      1.6       .6 setosa 
  45      5.1      3.8      1.9       .4 setosa 
  46      4.8      3.0      1.4       .3 setosa 
  47      5.1      3.8      1.6       .2 setosa 
  48      4.6      3.2      1.4       .2 setosa 
  49      5.3      3.7      1.5       .2 setosa 
  50      5.0      3.3      1.4       .2 setosa 
  51      7.0      3.2      4.7      1.4 versicolor 
  52      6.4      3.2      4.5      1.5 versicolor 
  53      6.9      3.1      4.9      1.5 versicolor 
  54      5.5      2.3      4.0      1.3 versicolor 
  55      6.5      2.8      4.6      1.5 versicolor 
  56      5.7      2.8      4.5      1.3 versicolor 
  57      6.3      3.3      4.7      1.6 versicolor 
  58      4.9      2.4      3.3      1.0 versicolor 
  59      6.6      2.9      4.6      1.3 versicolor 
  60      5.2      2.7      3.9      1.4 versicolor 
  61      5.0      2.0      3.5      1.0 versicolor 
  62      5.9      3.0      4.2      1.5 versicolor 
  63      6.0      2.2      4.0      1.0 versicolor 
  64      6.1      2.9      4.7      1.4 versicolor 
  65      5.6      2.9      3.6      1.3 versicolor 
  66      6.7      3.1      4.4      1.4 versicolor 
  67      5.6      3.0      4.5      1.5 versicolor 
  68      5.8      2.7      4.1      1.0 versicolor 
  69      6.2      2.2      4.5      1.5 versicolor 
  70      5.6      2.5      3.9      1.1 versicolor 
  71      5.9      3.2      4.8      1.8 versicolor 
  72      6.1      2.8      4.0      1.3 versicolor 
  73      6.3      2.5      4.9      1.5 versicolor 
  74      6.1      2.8      4.7      1.2 versicolor 
  75      6.4      2.9      4.3      1.3 versicolor 
  76      6.6      3.0      4.4      1.4 versicolor 
  77      6.8      2.8      4.8      1.4 versicolor 
  78      6.7      3.0      5.0      1.7 versicolor 
  79      6.0      2.9      4.5      1.5 versicolor 
  80      5.7      2.6      3.5      1.0 versicolor 
  81      5.5      2.4      3.8      1.1 versicolor 
  82      5.5      2.4      3.7      1.0 versicolor 
  83      5.8      2.7      3.9      1.2 versicolor 
  84      6.0      2.7      5.1      1.6 versicolor 
  85      5.4      3.0      4.5      1.5 versicolor 
  86      6.0      3.4      4.5      1.6 versicolor 
  87      6.7      3.1      4.7      1.5 versicolor 
  88      6.3      2.3      4.4      1.3 versicolor 
  89      5.6      3.0      4.1      1.3 versicolor 
  90      5.5      2.5      4.0      1.3 versicolor 
  91      5.5      2.6      4.4      1.2 versicolor 
  92      6.1      3.0      4.6      1.4 versicolor 
  93      5.8      2.6      4.0      1.2 versicolor 
  94      5.0      2.3      3.3      1.0 versicolor 
  95      5.6      2.7      4.2      1.3 versicolor 
  96      5.7      3.0      4.2      1.2 versicolor 
  97      5.7      2.9      4.2      1.3 versicolor 
  98      6.2      2.9      4.3      1.3 versicolor 
  99      5.1      2.5      3.0      1.1 versicolor 
 100      5.7      2.8      4.1      1.3 versicolor 
 101      6.3      3.3      6.0      2.5 virginica 
 102      5.8      2.7      5.1      1.9 virginica 
 103      7.1      3.0      5.9      2.1 virginica 
 104      6.3      2.9      5.6      1.8 virginica 
 105      6.5      3.0      5.8      2.2 virginica 
 106      7.6      3.0      6.6      2.1 virginica 
 107      4.9      2.5      4.5      1.7 virginica 
 108      7.3      2.9      6.3      1.8 virginica 
 109      6.7      2.5      5.8      1.8 virginica 
 110      7.2      3.6      6.1      2.5 virginica 
 111      6.5      3.2      5.1      2.0 virginica 
 112      6.4      2.7      5.3      1.9 virginica 
 113      6.8      3.0      5.5      2.1 virginica 
 114      5.7      2.5      5.0      2.0 virginica 
 115      5.8      2.8      5.1      2.4 virginica 
 116      6.4      3.2      5.3      2.3 virginica 
 117      6.5      3.0      5.5      1.8 virginica 
 118      7.7      3.8      6.7      2.2 virginica 
 119      7.7      2.6      6.9      2.3 virginica 
 120      6.0      2.2      5.0      1.5 virginica 
 121      6.9      3.2      5.7      2.3 virginica 
 122      5.6      2.8      4.9      2.0 virginica 
 123      7.7      2.8      6.7      2.0 virginica 
 124      6.3      2.7      4.9      1.8 virginica 
 125      6.7      3.3      5.7      2.1 virginica 
 126      7.2      3.2      6.0      1.8 virginica 
 127      6.2      2.8      4.8      1.8 virginica 
 128      6.1      3.0      4.9      1.8 virginica 
 129      6.4      2.8      5.6      2.1 virginica 
 130      7.2      3.0      5.8      1.6 virginica 
 131      7.4      2.8      6.1      1.9 virginica 
 132      7.9      3.8      6.4      2.0 virginica 
 133      6.4      2.8      5.6      2.2 virginica 
 134      6.3      2.8      5.1      1.5 virginica 
 135      6.1      2.6      5.6      1.4 virginica 
 136      7.7      3.0      6.1      2.3 virginica 
 137      6.3      3.4      5.6      2.4 virginica 
 138      6.4      3.1      5.5      1.8 virginica 
 139      6.0      3.0      4.8      1.8 virginica 
 140      6.9      3.1      5.4      2.1 virginica 
 141      6.7      3.1      5.6      2.4 virginica 
 142      6.9      3.1      5.1      2.3 virginica 
 143      5.8      2.7      5.1      1.9 virginica 
 144      6.8      3.2      5.9      2.3 virginica 
 145      6.7      3.3      5.7      2.5 virginica 
 146      6.7      3.0      5.2      2.3 virginica 
 147      6.3      2.5      5.0      1.9 virginica 
 148      6.5      3.0      5.2      2.0 virginica 
 149      6.2      3.4      5.4      2.3 virginica 
 150      5.9      3.0      5.1      1.8 virginica

使用 R 中的 iris 数据集的示例 PCA 双图(代码如下):

在此处输入图像描述

该图表明花瓣长度和花瓣宽度对于确定 PC1 分数和区分物种组很重要。setosa的花瓣更小,萼片更宽。

显然,通过绘制线性判别分析结果可以得出类似的结论,尽管我不确定 LDA 图呈现什么,因此是这个问题。轴是两个第一个线性判别式(LD1 99% 和 LD2 1% 的迹线)。红色向量的坐标是“线性判别系数”,也被描述为“缩放”(lda.fit$scaling:一个将观察值转换为判别函数的矩阵,归一化以使组内协方差矩阵是球形的)。“缩放”计算为diag(1/f1, , p)f1 is sqrt(diag(var(x - group.means[g, ])))数据可以投影到线性判别式上(使用 predict.lda)(下面的代码,如https://stackoverflow.com/a/17240647/742447所示)。将数据和预测变量绘制在一起,以便通过增加可以看到的预测变量来定义哪些物种(就像通常的 PCA 双图和上述 PCA 双图所做的那样):

使用 R 中的 iris 数据集的示例 LDA 双图

从这个图中,萼片宽度、花瓣宽度和花瓣长度都对 LD1 做出了相似的贡献。正如预期的那样,setosa 的花瓣更小,萼片更宽。

没有内置的方法可以在 R 中从 LDA 绘制这样的双图,并且很少有在线讨论,这让我对这种方法持谨慎态度。

这个 LDA 图(见下面的代码)是否提供了对预测变量缩放分数的统计有效解释?

PCA 代码:

require(grid)

  iris.pca <- prcomp(iris[,-5])
  PC <- iris.pca
  x="PC1"
  y="PC2"
  PCdata <- data.frame(obsnames=iris[,5], PC$x)

  datapc <- data.frame(varnames=rownames(PC$rotation), PC$rotation)
  mult <- min(
    (max(PCdata[,y]) - min(PCdata[,y])/(max(datapc[,y])-min(datapc[,y]))),
    (max(PCdata[,x]) - min(PCdata[,x])/(max(datapc[,x])-min(datapc[,x])))
  )
  datapc <- transform(datapc,
                      v1 = 1.6 * mult * (get(x)),
                      v2 = 1.6 * mult * (get(y))
  )

  datapc$length <- with(datapc, sqrt(v1^2+v2^2))
  datapc <- datapc[order(-datapc$length),]

  p <- qplot(data=data.frame(iris.pca$x),
             main="PCA",
             x=PC1,
             y=PC2,
             shape=iris$Species)
  #p <- p + stat_ellipse(aes(group=iris$Species))
  p <- p + geom_hline(aes(0), size=.2) + geom_vline(aes(0), size=.2)
  p <- p + geom_text(data=datapc, 
                     aes(x=v1, y=v2,
                         label=varnames,
                         shape=NULL,
                         linetype=NULL,
                         alpha=length), 
                     size = 3, vjust=0.5,
                     hjust=0, color="red")
  p <- p + geom_segment(data=datapc, 
                        aes(x=0, y=0, xend=v1,
                            yend=v2, shape=NULL, 
                            linetype=NULL,
                            alpha=length),
                        arrow=arrow(length=unit(0.2,"cm")),
                        alpha=0.5, color="red")
  p <- p + coord_flip()


  print(p)

LDA 代码

#Perform LDA analysis
iris.lda <- lda(as.factor(Species)~.,
                 data=iris)

#Project data on linear discriminants
iris.lda.values <- predict(iris.lda, iris[,-5])

#Extract scaling for each predictor and
data.lda <- data.frame(varnames=rownames(coef(iris.lda)), coef(iris.lda))

#coef(iris.lda) is equivalent to iris.lda$scaling

data.lda$length <- with(data.lda, sqrt(LD1^2+LD2^2))
scale.para <- 0.75

#Plot the results
p <- qplot(data=data.frame(iris.lda.values$x),
           main="LDA",
           x=LD1,
           y=LD2,
           shape=iris$Species)#+stat_ellipse()
p <- p + geom_hline(aes(0), size=.2) + geom_vline(aes(0), size=.2)
p <- p + theme(legend.position="none")
p <- p + geom_text(data=data.lda,
                   aes(x=LD1*scale.para, y=LD2*scale.para,
                       label=varnames, 
                       shape=NULL, linetype=NULL,
                       alpha=length),
                   size = 3, vjust=0.5,
                   hjust=0, color="red")
p <- p + geom_segment(data=data.lda,
                      aes(x=0, y=0,
                          xend=LD1*scale.para, yend=LD2*scale.para,
                          shape=NULL, linetype=NULL,
                          alpha=length),
                      arrow=arrow(length=unit(0.2,"cm")),
                      color="red")
p <- p + coord_flip()

print(p)

LDA的结果如下

lda(as.factor(Species) ~ ., data = iris)

Prior probabilities of groups:
    setosa versicolor  virginica 
 0.3333333  0.3333333  0.3333333 

Group means:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa            5.006       3.428        1.462       0.246
versicolor        5.936       2.770        4.260       1.326
virginica         6.588       2.974        5.552       2.026

Coefficients of linear discriminants:
                    LD1         LD2
Sepal.Length  0.8293776  0.02410215
Sepal.Width   1.5344731  2.16452123
Petal.Length -2.2012117 -0.93192121
Petal.Width  -2.8104603  2.83918785

Proportion of trace:
   LD1    LD2 
0.9912 0.0088
3个回答

主成分分析和线性判别分析输出虹膜数据

我不会绘制双标图,因为双标图可以使用各种标准化进行绘制,因此看起来可能会有所不同。由于我不是R用户,我很难追踪你如何制作你的情节,重复它们。相反,我将做 PCA 和 LDA 并以与此类似的方式显示结果(您可能想阅读)。两项分析均在 SPSS 中完成。

虹膜数据主要成分

The analysis will be based on covariances (not correlations) between the 4 variables.

Eigenvalues (component variances) and the proportion of overall variance explained
PC1   4.228241706    .924618723 
PC2    .242670748    .053066483 
PC3    .078209500    .017102610 
PC4    .023835093    .005212184 
# @Etienne's comment: 
# Eigenvalues are obtained in R by
# (princomp(iris[,-5])$sdev)^2 or (prcomp(iris[,-5])$sdev)^2.
# Proportion of variance explained is obtained in R by
# summary(princomp(iris[,-5])) or summary(prcomp(iris[,-5]))

Eigenvectors (cosines of rotation of variables into components)
              PC1           PC2           PC3           PC4
SLength   .3613865918   .6565887713  -.5820298513   .3154871929 
SWidth   -.0845225141   .7301614348   .5979108301  -.3197231037 
PLength   .8566706060  -.1733726628   .0762360758  -.4798389870 
PWidth    .3582891972  -.0754810199   .5458314320   .7536574253    
# @Etienne's comment: 
# This is obtained in R by
# prcomp(iris[,-5])$rotation or princomp(iris[,-5])$loadings

Loadings (eigenvectors normalized to respective eigenvalues;
loadings are the covariances between variables and standardized components)
              PC1           PC2           PC3           PC4
SLength    .743108002    .323446284   -.162770244    .048706863 
SWidth    -.173801015    .359689372    .167211512   -.049360829 
PLength   1.761545107   -.085406187    .021320152   -.074080509 
PWidth     .736738926   -.037183175    .152647008    .116354292    
# @Etienne's comment: 
# Loadings can be obtained in R with
# t(t(princomp(iris[,-5])$loadings) * princomp(iris[,-5])$sdev) or
# t(t(prcomp(iris[,-5])$rotation) * prcomp(iris[,-5])$sdev)

Standardized (rescaled) loadings
(loadings divided by st. deviations of the respective variables)
              PC1           PC2           PC3           PC4
SLength    .897401762     .390604412   -.196566721    .058820016
SWidth    -.398748472     .825228709    .383630296   -.113247642
PLength    .997873942    -.048380599    .012077365   -.041964868
PWidth     .966547516   -.048781602    .200261695    .152648309  

Raw component scores (Centered 4-variable data multiplied by eigenvectors)
     PC1           PC2           PC3           PC4
-2.684125626    .319397247   -.027914828    .002262437 
-2.714141687   -.177001225   -.210464272    .099026550 
-2.888990569   -.144949426    .017900256    .019968390 
-2.745342856   -.318298979    .031559374   -.075575817 
-2.728716537    .326754513    .090079241   -.061258593 
-2.280859633    .741330449    .168677658   -.024200858 
-2.820537751   -.089461385    .257892158   -.048143106 
-2.626144973    .163384960   -.021879318   -.045297871 
-2.886382732   -.578311754    .020759570   -.026744736 
-2.672755798   -.113774246   -.197632725   -.056295401 
... etc.
# @Etienne's comment: 
# This is obtained in R with
# prcomp(iris[,-5])$x or princomp(iris[,-5])$scores.
# Can also be eigenvector normalized for plotting

Standardized (to unit variances) component scores, when multiplied
by loadings return original centered variables.

重要的是要强调它是载荷,而不是特征向量,我们通常通过它来解释主成分(或因子分析中的因子)——如果我们需要解释的话。载荷是标准化分量建模变量的回归系数同时,由于分量不相关,它们是这些分量与变量之间的协方差。标准化(重新调整)载荷,如相关性,不能超过 1,并且更容易解释,因为变量的不等方差的影响被消除了。

它是载荷,而不是特征向量,通常与分量分数并排显示在双标图上;后者通常显示为列标准化。


虹膜数据的线性判别

There is 3 classes and 4 variables: min(3-1,4)=2 discriminants can be extracted.
Only the extraction (no classification of data points) will be done.

The Within scatter matrix 
38.95620000   13.63000000   24.62460000    5.64500000 
13.63000000   16.96200000    8.12080000    4.80840000 
24.62460000    8.12080000   27.22260000    6.27180000 
 5.64500000    4.80840000    6.27180000    6.15660000 

The Between scatter matrix 
 63.2121333   -19.9526667   165.2484000    71.2793333 
-19.9526667    11.3449333   -57.2396000   -22.9326667 
165.2484000   -57.2396000   437.1028000   186.7740000 
 71.2793333   -22.9326667   186.7740000    80.4133333

Eigenvalues and canonical correlations
(Canonical correlation squared is SSbetween/SStotal of ANOVA by that discriminant)
Dis1    32.19192920     .98482089 
Dis2      .28539104     .47119702
# @Etienne's comment:
# In R eigenvalues are expected from
# lda(as.factor(Species)~.,data=iris)$svd, but this produces
#   Dis1       Dis2
# 48.642644  4.579983
# @ttnphns' comment:
# The difference might be due to different computational approach
# (e.g. me used eigendecomposition and R used svd?) and is of no importance.
# Canonical correlations though should be the same.

Eigenvectors
              Dis1          Dis2
SLength  -.0684059150   .0019879117 
SWidth   -.1265612055   .1785267025 
PLength   .1815528774  -.0768635659 
PWidth    .2318028594   .2341722673

Eigenvectors (as before, but column-normalized to SS=1: cosines of rotation of variables into discriminants).
              Dis1          Dis2
SLength  -.2087418215   .0065319640 
SWidth   -.3862036868   .5866105531 
PLength   .5540117156  -.2525615400 
PWidth    .7073503964   .7694530921

Unstandardized discriminant coefficients (proportionally related to eigenvectors)
              Dis1          Dis2
SLength   -.829377642    .024102149 
SWidth   -1.534473068   2.164521235 
PLength   2.201211656   -.931921210 
PWidth    2.810460309   2.839187853
# @Etienne's comment:
# This is obtained in R with
# lda(as.factor(Species)~.,data=iris)$scaling
# which is described as being standardized discriminant coefficients in the function definition.

Standardized discriminant coefficients
              Dis1          Dis2
SLength  -.4269548486   .0124075316 
SWidth   -.5212416758   .7352613085 
PLength   .9472572487  -.4010378190 
PWidth    .5751607719   .5810398645

Pooled within-groups correlations between variables and discriminants
              Dis1          Dis2
SLength   .2225959415   .3108117231 
SWidth   -.1190115149   .8636809224 
PLength   .7060653811   .1677013843 
PWidth    .6331779262   .7372420588 

Discriminant scores (Centered 4-variable data multiplied by unstandardized coefficients)
     Dis1           Dis2
-8.061799783    .300420621 
-7.128687721   -.786660426 
-7.489827971   -.265384488 
-6.813200569   -.670631068 
-8.132309326    .514462530 
-7.701946744   1.461720967 
-7.212617624    .355836209 
-7.605293546   -.011633838 
-6.560551593  -1.015163624 
-7.343059893   -.947319209
... etc.
# @Etienne's comment:
# This is obtained in R with
# predict(lda(as.factor(Species)~.,data=iris), iris[,-5])$x

关于在 LDA 中提取判别式的计算,请看这里我们通常通过判别系数或标准化判别系数来解释判别式(后者更方便,因为去掉了变量的差异方差)。这就像在 PCA 中一样。但是,请注意:这里的系数是按变量建模判别式的回归系数,反之亦然,就像在 PCA 中一样。因为变量不是不相关的,所以系数不能被视为变量和判别式之间的协方差。

然而,我们有另一个矩阵,它可以作为判别式解释的替代来源——汇集了判别式和变量之间的组内相关性。因为判别式是不相关的,就像 PC 一样,这个矩阵在某种意义上类似于 PCA 的标准化负载。

总之,虽然在 PCA 中我们有唯一的矩阵 - 负载 - 来帮助解释潜在值,但在 LDA 中我们有两个替代矩阵。如果您需要绘图(双标图或其他),您必须决定是绘制系数还是相关性。

而且,当然,不用提醒,在虹膜数据的 PCA 中,组件并不“知道”有 3 个类;不能指望他们歧视阶级。判别者确实“知道”有阶级,而区分是他们的自然工作。

我的理解是可以完成线性判别分析的双图,它实际上是在 R 包ggbiplotggord中实现的,另一个函数发布在这个 StackOverflow 线程中。

此外,M. Greenacre 所著的“实践中的双图”一书有一章(第 11 章,参见 pdf),在图 11.5 中它显示了 iris 数据集的线性判别分析的双图: 在此处输入图像描述

我知道这是在一年前提出的,并且 ttnphns 给出了一个出色而深入的答案,但我想我会为那些(像我一样)对 PCA 和 LDA 感兴趣的人添加一些评论,因为它们在生态学中的有用性科学,但统计背景有限(不是统计学家)。

PCA 中的 PC 是原始变量的线性组合,它们依次最大程度地解释了多维数据集中的总方差。您将拥有与原始变量一样多的 PC。PC 解释的方差百分比由所使用的相似性矩阵的特征值给出,每个新 PC 上每个原始变量的系数由特征向量给出。PCA 没有关于组的假设。PCA 非常适合查看数据中多个变量的值如何变化(例如,在双图中)。解释 PCA 很大程度上依赖于双标图。

LDA 之所以不同,有一个非常重要的原因——它通过最大化组间方差来创建新变量 (LD)。这些仍然是原始变量的线性组合,但不是尽可能多地解释每个连续 LD 的差异,而是绘制它们以最大化沿该新变量的组之间的差异。LDA(和 MANOVA)不是相似矩阵,而是使用组间和组内平方和和叉积的比较矩阵。该矩阵的特征向量 - OP 最初关注的系数 - 描述了原始变量对新 LD 形成的贡献程度。

由于这些原因,与 LDA 相比,来自 PCA 的特征向量将让您更好地了解变量在数据云中的值如何变化,以及它对数据集中总方差的重要性。但是,LDA,特别是与 MANOVA 结合使用,将为您提供组的多元质心差异的统计检验,以及将点分配给各自组的误差估计(在某种意义上,多元效应大小)。在 LDA 中,即使变量在组间呈线性(且显着)变化,其在 LD 上的系数也可能无法指示该效应的“规模”,并且完全取决于分析中包含的其他变量。

我希望这很清楚。谢谢你的时间。请看下面的图片...

PC 和 LD 的构造不同,LD 的系数可能无法让您了解原始变量在数据集中的变化情况