Tukey HSD 测试如何比 t.test 的未校正 P 值更显着?

机器算法验证 r 多重比较 t检验 事后 tukey-hsd-测试
2022-03-29 16:47:49

我是通过帖子“双向方差分析的事后配对比较”(回复这篇文章)来的,它显示了以下内容:

dataTwoWayComparisons <- read.csv("http://www.dailyi.org/blogFiles/RTutorialSeries/dataset_ANOVA_TwoWayComparisons.csv")

model1 <- aov(StressReduction~Treatment+Age, data =dataTwoWayComparisons)
summary(model1) # Treatment is signif

pairwise.t.test(dataTwoWayComparisons$StressReduction, dataTwoWayComparisons$Treatment, p.adj = "none")
# no signif pair

TukeyHSD(model1, "Treatment")
# mental-medical   is the signif pair.

(输出附在下面)

有人可以解释一下为什么 Tukey HSD 能够找到一个重要的配对,而配对(未调整的 pvalue)t 检验却没有这样做吗?

谢谢。


这是代码输出

> model1 <- aov(StressReduction~Treatment+Age, data =dataTwoWayComparisons)
> summary(model1) # Treatment is signif
            Df Sum Sq Mean Sq F value    Pr(>F)    
Treatment    2     18   9.000      11 0.0004883 ***
Age          2    162  81.000      99     1e-11 ***
Residuals   22     18   0.818                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
> 
> pairwise.t.test(dataTwoWayComparisons$StressReduction, dataTwoWayComparisons$Treatment, p.adj = "none")

        Pairwise comparisons using t tests with pooled SD 

data:  dataTwoWayComparisons$StressReduction and dataTwoWayComparisons$Treatment 

         medical mental
mental   0.13    -     
physical 0.45    0.45  

P value adjustment method: none 
> # no signif pair
> 
> TukeyHSD(model1, "Treatment")
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = StressReduction ~ Treatment + Age, data = dataTwoWayComparisons)

$Treatment
                 diff         lwr        upr     p adj
mental-medical      2  0.92885267 3.07114733 0.0003172
physical-medical    1 -0.07114733 2.07114733 0.0702309
physical-mental    -1 -2.07114733 0.07114733 0.0702309

> # mental-medical   is the signif pair.
1个回答

因为你的成对t- 上面的测试没有针对年龄进行调整,年龄解释了 StressReduction 的很多差异。