如何比较不同组的重复性(ICC)?

机器算法验证 r t检验 类内相关 可重复性
2022-03-07 00:51:33

我已经计算了两组的 ICC 值,现在想比较 ICC 值以确定这些组的可重复性是否不同。在文献中,人们只是简单地使用 t 检验来比较可重复性,但我不清楚如何做到这一点。

例如,使用虚拟数据:

ID  gr  day behaviour
1   1   1   0.361
2   1   1   0.232
3   1   1   0.240
4   1   1   0.693
5   1   1   0.483
6   1   1   0.267
7   2   1   0.180
8   2   1   0.515
9   2   1   0.485
10  2   1   0.567
11  2   1   0.000
12  2   1   0.324
1   1   2   0.055
2   1   2   0.407
3   1   2   0.422
4   1   2   0.174
5   1   2   0.613
6   1   2   0.311
7   2   2   0.631
8   2   2   0.283
9   2   2   0.512
10  2   2   0.127
11  2   2   0.000
12  2   2   0.000

我可以得到第 1 组和第 2 组的重复性测量,如下所示:

library(ICC)
g1 <- ICCest(ID, behaviour, data=dummy[dummy$gr=="1",])
g2 <- ICCest(ID, behaviour, data=dummy[dummy$gr=="2",])

但是我现在如何确定 group1 的可重复性是否与 group2 不同?

1个回答

撇开关于研究问题和演示数据的实质性问题(以及获得合理估计 ICC 的样本量),您从ICCest函数获得的输出附有置信区间:作为比较组的起点,您可以考虑是否每个置信区间与另一组对 ICC 的点估计之间存在重叠。

无论如何,报告 ICC 的点估计和每组的置信区间将比仅报告点估计和某种结果更有用(因此我建议在任何情况下报告这些)假设检验。

dummy <- structure(list(ID = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
                  11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L), 
           gr = c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
                  1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), 
           day = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
                   2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), 
           behaviour = c(0.361, 0.232, 0.24, 0.693, 0.483, 0.267, 0.18, 0.515, 0.485,
                         0.567, 0, 0.324, 0.055, 0.407, 0.422, 0.174, 0.613, 0.311, 
                         0.631, 0.283, 0.512, 0.127, 0, 0)), 
           .Names = c("ID", "gr", "day", "behaviour"), 
          class = "data.frame", row.names = c(NA, -24L))

library(ICC)
ICCest(ID, behaviour, data=dummy[dummy$gr=="1",])
# First few lines of console output:
#$ICC
#[1] -0.1317788
#$LowerCI
#[1] -0.7728603
#$UpperCI
#[1] 0.6851783

ICCest(ID, behaviour, data=dummy[dummy$gr=="2",])
# First few lines of console output:
#$ICC
#[1] 0.1934523
#$LowerCI
#[1] -0.6036826
#$UpperCI
#[1] 0.8233986