对于我的博士论文,我必须进行主成分分析(PCA)。我没有发现在 Stata 中太难,并且很高兴解释结果(我知道因子分析和主成分分析之间存在差异)。但是,我与使用 SPSS 的同事讨论过,所以我也将我的数据(从 Excel)导入到 SPSS 中,并在那里执行了 PCA。
令我震惊的是,结果与我的 Stata 结果(轮换后)大不相同。甚至没有接近它。
怎么可能?(请参阅下面的 Stata PCA 和 SPSS PCA 代码和结果)。
对我来说甚至更陌生:当我factor [varnames], pcf
在 Stata 中进行(主成分因子)时,我收到(几乎)与 SPSS 中的 PCA 相同的结果(请参阅下面的 Stata 主成分因子)。
什么是主成分因子?PCA和因子分析的混合体?
我很困惑。如果人们在期刊上报告做过 PCA:那么我应该问,用 SPSS 还是 Stata?谁能给我解释一下?
状态:
pca bewert_sfu_a bewert_sfu_b bewert_sfu_c bewert_sfu_d bewert_sfu_e bewert_sfu_f bewert_sfu_g bewert_sfu_h bewert_sfu_i bewert_sfu_j bewert_sfu_k bewert_sfu_l, mineigen(1)
主成分/相关
obs 数量 = 158 补偿数量。= 3 轨迹 = 12 旋转:(未旋转 = 主要)Rho = 0.5382
--------------------------------------------------------------------------
Component | Eigenvalue Difference Proportion Cumulative
-------------+------------------------------------------------------------
Comp1 | 3.8723 2.46548 0.3227 0.3227
Comp2 | 1.40682 .227718 0.1172 0.4399
Comp3 | 1.1791 .206742 0.0983 0.5382
Comp4 | .972359 .169164 0.0810 0.6192
Comp5 | .803195 .050871 0.0669 0.6861
Comp6 | .752324 .0953662 0.0627 0.7488
Comp7 | .656957 .0137592 0.0547 0.8036
Comp8 | .643198 .135894 0.0536 0.8572
Comp9 | .507304 .0435925 0.0423 0.8995
Comp10 | .463711 .0749052 0.0386 0.9381
Comp11 | .388806 .0348752 0.0324 0.9705
Comp12 | .353931 . 0.0295 1.0000
--------------------------------------------------------------------------
主成分(特征向量)
----------------------------------------------------------
Variable | Comp1 Comp2 Comp3 | Unexplained
-------------+------------------------------+-------------
bewert_sfu_a | 0.2700 0.3901 -0.1477 | .4779
bewert_sfu_b | 0.3298 0.2303 -0.4027 | .3129
bewert_sfu_c | -0.3046 0.3149 0.1773 | .4642
bewert_sfu_d | 0.3489 0.1910 0.0700 | .4715
bewert_sfu_e | 0.3342 0.2067 0.2720 | .4202
bewert_sfu_f | -0.2001 0.4561 -0.1587 | .5227
bewert_sfu_g | 0.3057 0.3128 0.1531 | .4728
bewert_sfu_h | -0.3611 0.2180 0.2913 | .328
bewert_sfu_i | 0.2352 -0.2211 0.3662 | .5588
bewert_sfu_j | -0.1556 0.3894 0.4578 | .4457
bewert_sfu_k | 0.3239 0.0525 0.0754 | .5832
bewert_sfu_l | 0.2091 -0.2445 0.4720 | .4839
----------------------------------------------------------
rotate, varimax kaiser
主成分/相关 obs 数量 = 158 补偿数量。= 3 轨迹 = 12 旋转:正交 varimax (Kaiser on) Rho = 0.5382
--------------------------------------------------------------------------
Component | Variance Difference Proportion Cumulative
-------------+------------------------------------------------------------
Comp1 | 2.95242 .867357 0.2460 0.2460
Comp2 | 2.08506 .66433 0.1738 0.4198
Comp3 | 1.42073 . 0.1184 0.5382
--------------------------------------------------------------------------
旋转组件
----------------------------------------------------------
Variable | Comp1 Comp2 Comp3 | Unexplained
-------------+------------------------------+-------------
bewert_sfu_a | 0.4076 -0.0266 -0.2829 | .4779
bewert_sfu_b | 0.3116 -0.3063 -0.3648 | .3129
bewert_sfu_c | -0.0255 0.4536 -0.1302 | .4642
bewert_sfu_d | 0.4007 -0.0456 0.0218 | .4715
bewert_sfu_e | 0.4392 0.0965 0.1618 | .4202
bewert_sfu_f | 0.0698 0.2650 -0.4451 | .5227
bewert_sfu_g | 0.4531 0.0973 0.0005 | .4728
bewert_sfu_h | -0.1026 0.5023 0.0011 | .328
bewert_sfu_i | 0.1350 -0.0261 0.4684 | .5588
bewert_sfu_j | 0.1927 0.5856 0.0731 | .4457
bewert_sfu_k | 0.3026 -0.1048 0.1037 | .5832
bewert_sfu_l | 0.1224 0.0410 0.5564 | .4839
----------------------------------------------------------
组件旋转矩阵
--------------------------------------------
| Comp1 Comp2 Comp3
-------------+------------------------------
Comp1 | 0.7942 -0.5573 0.2422
Comp2 | 0.5724 0.5523 -0.6061
Comp3 | 0.2040 0.6200 0.7576
--------------------------------------------
SPSS代码:
FACTOR
/VARIABLES bewert_sfu_a bewert_sfu_b bewert_sfu_c bewert_sfu_d bewert_sfu_e bewert_sfu_f bewert_sfu_g bewert_sfu_h bewert_sfu_i bewert_sfu_j bewert_sfu_k bewert_sfu_l
/MISSING LISTWISE
/ANALYSIS bewert_sfu_a bewert_sfu_b bewert_sfu_c bewert_sfu_d bewert_sfu_e bewert_sfu_f bewert_sfu_g bewert_sfu_h bewert_sfu_i bewert_sfu_j bewert_sfu_k bewert_sfu_l
/PRINT EXTRACTION ROTATION
/FORMAT BLANK(.40)
/CRITERIA MINEIGEN(1) ITERATE(50)
/EXTRACTION PC
/CRITERIA ITERATE(50)
/ROTATION VARIMAX
/METHOD=CORRELATION.
描述性统计
Mean Std. Deviation Analysis N
bewert_sfu_a 3.79 .452 158
bewert_sfu_b 3.68 .506 158
bewert_sfu_c 1.61 .827 158
bewert_sfu_d 3.32 .619 158
bewert_sfu_e 3.03 .643 158
bewert_sfu_f 2.61 .812 158
bewert_sfu_g 3.32 .621 158
bewert_sfu_h 1.53 .796 158
bewert_sfu_i 2.10 .838 158
bewert_sfu_j 2.53 .819 158
bewert_sfu_k 3.29 .784 158
bewert_sfu_l 2.78 .842 158`
成分矩阵
Component
1 2 3
bewert_sfu_a .531 .463
bewert_sfu_b .649 -.437
bewert_sfu_c -.599
bewert_sfu_d .687
bewert_sfu_e .658
bewert_sfu_f .541
bewert_sfu_g .602
bewert_sfu_h -.711
bewert_sfu_i .463
bewert_sfu_j .462 .497
bewert_sfu_k .637
bewert_sfu_l .412 .513
提取方法:主成分分析。
提取了 3 个组件。
社区
Extraction
bewert_sfu_a .522
bewert_sfu_b .687
bewert_sfu_c .536
bewert_sfu_d .529
bewert_sfu_e .580
bewert_sfu_f .477
bewert_sfu_g .527
bewert_sfu_h .672
bewert_sfu_i .441
bewert_sfu_j .554
bewert_sfu_k .417
bewert_sfu_l .516
Extraction Method: Principal Component Analysis.
旋转分量矩阵 a
Component
1 2 3
bewert_sfu_a .705
bewert_sfu_b .673 -.448
bewert_sfu_c .627
bewert_sfu_d .671
bewert_sfu_e .661
bewert_sfu_f -.576
bewert_sfu_g .699
bewert_sfu_h .698
bewert_sfu_i .630
bewert_sfu_j .742
bewert_sfu_k .528
bewert_sfu_l .707
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a Rotation converged in 5 iterations.
分量变换矩阵
Component 1 2 3
1 .765 -.476 .434
2 .644 .567 -.513
3 -.001 .672 .741
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Stata 因子分析/相关
obs 数量 = 158
方法:主成分因子
保留因子 = 3 旋转:(未旋转)
参数数量 = 33
--------------------------------------------------------------------------
Factor | Eigenvalue Difference Proportion Cumulative
-------------+------------------------------------------------------------
Factor1 | 3.87230 2.46548 0.3227 0.3227
Factor2 | 1.40682 0.22772 0.1172 0.4399
Factor3 | 1.17910 0.20674 0.0983 0.5382
Factor4 | 0.97236 0.16916 0.0810 0.6192
Factor5 | 0.80319 0.05087 0.0669 0.6861
Factor6 | 0.75232 0.09537 0.0627 0.7488
Factor7 | 0.65696 0.01376 0.0547 0.8036
Factor8 | 0.64320 0.13589 0.0536 0.8572
Factor9 | 0.50730 0.04359 0.0423 0.8995
Factor10 | 0.46371 0.07491 0.0386 0.9381
Factor11 | 0.38881 0.03488 0.0324 0.9705
Factor12 | 0.35393 . 0.0295 1.0000
--------------------------------------------------------------------------
LR test: independent vs. saturated: chi2(66) = 453.95 Prob>chi2 = 0.0
因子载荷(模式矩阵)和唯一方差
-----------------------------------------------------------
Variable | Factor1 Factor2 Factor3 | Uniqueness
-------------+------------------------------+--------------
bewert_sfu_a | 0.5314 0.4627 -0.1603 | 0.4779
bewert_sfu_b | 0.6490 0.2732 -0.4373 | 0.3129
bewert_sfu_c | -0.5994 0.3735 0.1926 | 0.4642
bewert_sfu_d | 0.6866 0.2265 0.0760 | 0.4715
bewert_sfu_e | 0.6576 0.2451 0.2954 | 0.4202
bewert_sfu_f | -0.3938 0.5409 -0.1723 | 0.5227
bewert_sfu_g | 0.6015 0.3710 0.1663 | 0.4728
bewert_sfu_h | -0.7107 0.2586 0.3163 | 0.3280
bewert_sfu_i | 0.4629 -0.2622 0.3977 | 0.5588
bewert_sfu_j | -0.3062 0.4619 0.4971 | 0.4457
bewert_sfu_k | 0.6373 0.0623 0.0818 | 0.5832
bewert_sfu_l | 0.4116 -0.2900 0.5125 | 0.4839
rotate, varimax kaiser blanks(.4)
因子分析/相关
obs 数量 = 158 方法:主成分因子
保留因子 = 3 旋转:正交 varimax (Kaiser on)
参数数量 = 33
--------------------------------------------------------------------------
Factor | Variance Difference Proportion Cumulative
-------------+------------------------------------------------------------
Factor1 | 2.84986 0.98705 0.2375 0.2375
Factor2 | 1.86281 0.11727 0.1552 0.3927
Factor3 | 1.74554 . 0.1455 0.5382
--------------------------------------------------------------------------
LR test: independent vs. saturated: chi2(66) = 453.95 Prob>chi2 = 0.0000
旋转因子载荷(模式矩阵)和唯一方差
-----------------------------------------------------------
Variable | Factor1 Factor2 Factor3 | Uniqueness
-------------+------------------------------+--------------
bewert_sfu_a | 0.7047 -0.0983 -0.1258 | 0.4779
bewert_sfu_b | 0.6732 -0.4479 -0.1827 | 0.3129
bewert_sfu_c | -0.2184 0.6266 -0.3090 | 0.4642
bewert_sfu_d | 0.6710 -0.1473 0.2377 | 0.4715
bewert_sfu_e | 0.6605 0.0245 0.3781 | 0.4202
bewert_sfu_f | 0.0474 0.3785 -0.5761 | 0.5227
bewert_sfu_g | 0.6989 0.0358 0.1935 | 0.4728
bewert_sfu_h | -0.3776 0.6976 -0.2067 | 0.3280
bewert_sfu_i | 0.1847 -0.1019 0.6298 | 0.5588
bewert_sfu_j | 0.0624 0.7419 -0.0018 | 0.4457
bewert_sfu_k | 0.5276 -0.2131 0.3050 | 0.5832
bewert_sfu_l | 0.1273 -0.0160 0.7069 | 0.4839
-----------------------------------------------------------
因子旋转矩阵
-----------------------------------------
| Factor1 Factor2 Factor3
-------------+---------------------------
Factor1 | 0.7650 -0.4761 0.4336
Factor2 | 0.6440 0.5672 -0.5134
Factor3 | -0.0016 0.6720 0.7406
-----------------------------------------