The linearity of the QQ-plot only suggests that your sample follows a normal distribution (or more specifically, it's quantile function is the probit function). The slope is determined by the standard deviation (for sd=1, we get the popular x=y line).
An S-shaped plot, something which seems symmetrical across 180-degree rotation is indicative of a symmetric distribution.
An intuitive reasoning for the shape is thus; to get a straight line, you need a similar scaling of the spacing of the quantiles around the mean. Meaning that if say xth quantile is some proportion of distance from the mean when compared to yth quantile, the proportion is conserved, which is only conserved in case of a normal distribution. The slope is more indicative of the absolute magnitude of this proportion, hence depends on the sd. Different shapes can be reasoned out in a similar way, by looking at this proportion at different places along the distribution.
Here are some visualisations.
Note: I am plotting the sample on the Y-axis as is the norm, and I am assuming that the way you have plotted puts the sample on the x axis.
R-code:
# Creating different distributions with mean 0
library(rmutil)
set.seed(12345)
normald<-rnorm(10000,sd=2)
normald<-(normald-mean(normald))/sd(normald)
sharperpeak<-rlaplace(10000) #using Laplace distribution
sharperpeak<-(sharperpeak-mean(sharperpeak))/sd(sharperpeak)
heavytail<-rt(10000,5) #using t-distribution
heavytail<-(heavytail-mean(heavytail))/sd(heavytail)
positiveskew<-rlnorm(10000) #using lognormal distribution
positiveskew<-(positiveskew-mean(positiveskew))/sd(positiveskew)
negativeskew<-positiveskew*(-1) #shortcut
negativeskew<-(negativeskew-mean(negativeskew))/sd(negativeskew)
library(ggplot2)
library(gridExtra)
#normal plot
p1<-ggplot(data.frame(dt=normald))+geom_density(aes(x=dt),fill='green',alpha=0.6)+xlab('Normal Distribution')+geom_vline(xintercept=quantile(normald,c(0.25,0.75),color='red',alpha=0.3))
p2<-ggplot(data.frame(dt=normald))+geom_qq(aes(sample=dt))+geom_abline(slope=1,intercept = 0)
grid.arrange(p1,p2,nrow=1)
#sharppeak plot
p1<-ggplot(data.frame(dt=sharperpeak))+geom_density(aes(x=dt),fill='green',alpha=0.6)+xlab('Sharper-peaks')+geom_vline(xintercept=quantile(sharperpeak,c(0.25,0.75),color='red',alpha=0.3))
p2<-ggplot(data.frame(dt=sharperpeak))+geom_qq(aes(sample=dt))+geom_abline(slope=1,intercept = 0)
grid.arrange(p1,p2,nrow=1)
#heaviertails plot
p1<-ggplot(data.frame(dt=heavytail))+geom_density(aes(x=dt),fill='green',alpha=0.6)+xlab('Heavy Tails')+geom_vline(xintercept=quantile(heavytail,c(0.25,0.75),color='red',alpha=0.3))
p2<-ggplot(data.frame(dt=heavytail))+geom_qq(aes(sample=dt))+geom_abline(slope=1,intercept = 0)
grid.arrange(p1,p2,nrow=1)
#positiveskew plot
p1<-ggplot(data.frame(dt=positiveskew))+geom_density(aes(x=dt),fill='green',alpha=0.6)+xlab('Positively skewed Distribution')+geom_vline(xintercept=quantile(positiveskew,c(0.25,0.75),color='red',alpha=0.3))+xlim(-1.5,5)
p2<-ggplot(data.frame(dt=positiveskew))+geom_qq(aes(sample=dt))+geom_abline(slope=1,intercept = 0)
grid.arrange(p1,p2,nrow=1)
#negative skew plot
p1<-ggplot(data.frame(dt=negativeskew))+geom_density(aes(x=dt),fill='green',alpha=0.6)+xlab('Negatively skewed Distribution')+geom_vline(xintercept=quantile(negativeskew,c(0.25,0.75),color='red',alpha=0.3))+xlim(-5,1.5)
p2<-ggplot(data.frame(dt=negativeskew))+geom_qq(aes(sample=dt))+geom_abline(slope=1,intercept = 0)
grid.arrange(p1,p2,nrow=1)
# Normal distributions with different sds
normal1<-rnorm(3000,sd=2)
normal2<-rnorm(3000,sd=4)
normal3<-rnorm(3000,sd=0.5)
normal4<-rnorm(3000,sd=0.25)
final<-c(normal1,normal2,normal3,normal4)
ggplot(data.frame(dt=final,sds=factor(rep(c('2','4','0.5','0.25'),each=3000))),aes(sample=dt,color=sds))+geom_qq()+geom_abline(slope=1,intercept=0)