我正在使用glmer()
二项式响应变量。我的最佳模型有两个固定效应(流量和 DNA),它们在 summary() 中显示不显着的 p 值,但是当我依次从模型中删除每个固定效应时,比较两个模型的似然比检验显示出显着的 p 值。我很难理解(1)这是否正常,以及(2)如果解释变量“流量”和“DNA”很重要但它们在模型中的 p 值远高于 0.05,如何报告结果?
最佳型号:
a25 <- glmer(Status_qpcr~(1|Root)+Flow+DNA,
family=binomial, data=spore)
summary(a25)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: Status_qpcr ~ (1 | Root) + Flow + DNA
Data: spore
AIC BIC logLik deviance df.resid
72.9 81.0 -32.4 64.9 52
Scaled residuals:
Min 1Q Median 3Q Max
-2.9318 -0.8163 0.4435 0.6848 1.6133
Random effects:
Groups Name Variance Std.Dev.
Root (Intercept) 0.3842 0.6199
Number of obs: 56, groups: Root, 9
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.97752 0.79252 -1.233 0.217
Flow 3.82779 2.27165 1.685 0.092 .
DNA 0.01616 0.01039 1.556 0.120
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) Flow Flow -0.775
DNA -0.576 0.227
似然比检验:
a26 <- update(a25,~.-DNA)
anova(a25,a26)
Data: spore
Models:
a26: Status_qpcr ~ (1 | Root) + Flow
a25: Status_qpcr ~ (1 | Root) + Flow + DNA
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
a26 3 74.802 80.878 -34.401 68.802
a25 4 72.897 80.998 -32.448 64.897 3.9049 1 0.04815 *
a27 <- update(a25,~.-Flow)
anova(a25,a27)
Data: spore
Models:
a27: Status_qpcr ~ (1 | Root) + DNA
a25: Status_qpcr ~ (1 | Root) + Flow + DNA
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
a27 3 78.440 84.723 -36.220 72.440
a25 4 72.897 80.998 -32.448 64.897 7.5427 1 0.006025 **