适合的是
y=26.9188+1.7468sin(x)+1.2077cos(x).
考虑一个一般(非零)线性组合将视为向量并将其写入极坐标会产生αsin(x)+βcos(x).(α,β)(r,ϕ)
α=rcos(ϕ),β=rsin(ϕ),r=α2+β2−−−−−−√
何处
αsin(x)+βcos(x)=rcos(ϕ)sin(x)+rsin(ϕ)cos(x)=rsin(x+ϕ).
r是幅度,是相位。在本例中,和 蕴含ϕα=1.7468β=1.2077
r=1.74682+1.20772−−−−−−−−−−−−−−√=2.123641
和
ϕ=arctan(β,α)=0.6049163.
最后
y=26.9188+2.123641sin(x+0.6049163).
这可以通过绘图来检查。这是R执行此操作的代码:
b0 <- coef(fit.lm2)[1]
alpha <- coef(fit.lm2)[2]
beta <- coef(fit.lm2)[3]
r <- sqrt(alpha^2 + beta^2)
phi <- atan2(beta, alpha)
par(mfrow=c(1,2))
curve(b0 + r * sin(x + phi), 0, 2*pi, lwd=3, col="Gray",
main="Overplotted Graphs", xlab="x", ylab="y")
curve(b0 + alpha * sin(x) + beta * cos(x), lwd=3, lty=3, col="Red", add=TRUE)
curve(b0 + r * sin(x + phi) - (b0 + alpha * sin(x) + beta * cos(x)),
0, 2*pi, n=257, lwd=3, col="Gray", main="Difference", xlab="x", y="")

这两个公式同意双精度算术中的十六位有效数字。差异反映了伪随机浮点错误。(因为我的数据与原始数据不完全相同,“差异”图的细节会有所不同,但仍然只会表现出微小的变化。)