我正在分析二维数据。在 fitdistrplus 和 logspline 包的帮助下分析每个维度后,它们都符合 Beta 分布。是否可以像双变量 Beta 分布一样分析二维数据?(注意:我使用的是 R。)
数据集样本:
数据点是随着时间对特定产品进行的 2 种不同化学反应测试的输出。所以在时间 1 PB=2.394和DBA=134.417,在时间 2 PB=2.594和DBA=111.382等等。
structure(list(PB = c(2.394, 2.594, 2.78, 2.499, 2.478, 2.744,
2.563, 2.553, 2.631, 2.434, 2.604, 2.685, 2.439, 2.548, 2.778,
2.604, 2.638, 2.585, 2.808, 2.784, 2.489, 2.797, 2.619, 2.687,
2.624, 2.341, 2.712, 2.493, 2.616, 2.562), DBA = c(134.417, 111.382,
125.303, 163.445, 89.428, 141.881, 140.559, 141.408, 122.498,
128.099, 115.88, 111.83, 170.685, 89.956, 128.948, 131.064, 170.114,
101.843, 132.092, 173.86, 91.976, 130.882, 132.016, 157.143,
122.052, 100.08, 140.079, 144.167, 141.072, 143.787)), .Names = c("PB",
"DBA"), row.names = c(NA, 30L), class = "data.frame")
Beta 分布的缩放样本数据集:
structure(list(PB = c(0.589027911453321, 0.781520692974013, 0.960538979788258,
0.690086621751685, 0.669874879692012, 0.925890279114534, 0.751684311838306,
0.742059672762271, 0.817131857555342, 0.627526467757459, 0.791145332050048,
0.869104908565929, 0.632338787295477, 0.737247353224254, 0.958614051973051,
0.791145332050048, 0.823869104908566, 0.772858517805582, 0.987487969201155,
0.964388835418672, 0.68046198267565, 0.976900866217517, 0.8055822906641,
0.871029836381136, 0.810394610202118, 0.538017324350337, 0.895091434071223,
0.684311838306064, 0.80269489894129, 0.750721847930703), NOH = c(0.371624288211084,
0.241754524440435, 0.320240175903479, 0.535282178496927, 0.117979365168856,
0.413705812707899, 0.406252466595253, 0.411039070868805, 0.304425776625134,
0.336003833793764, 0.267113942605852, 0.244280317979365, 0.576100806224277,
0.120956193268309, 0.340790438067317, 0.352720302193156, 0.572881547048543,
0.18797429103005, 0.358516096295879, 0.594001240345042, 0.13234481592152,
0.351694198567965, 0.358087613463382, 0.499751930991712, 0.301911258950217,
0.17803461690252, 0.403546259232114, 0.426594125274849, 0.409144725714608,
0.424451711112364)), .Names = c("PB", "NOH"), row.names = c(NA,
30L), class = "data.frame")