这是我的模型lme4
library(nlme) # for the data
data("Machines") # the data
fit2 <- lmer(score ~ -1 + Machine + (1|Worker), data=Machines)
summary(fit2)
Linear mixed model fit by REML ['lmerMod']
Formula: score ~ -1 + Machine + (1 | Worker)
Data: Machines
REML criterion at convergence: 286.9
Scaled residuals:
Min 1Q Median 3Q Max
-2.7249 -0.5233 0.1328 0.6513 1.7559
Random effects:
Groups Name Variance Std.Dev.
Worker (Intercept) 26.487 5.147
Residual 9.996 3.162
Number of obs: 54, groups: Worker, 6
Fixed effects:
Estimate Std. Error t value
MachineA 52.356 2.229 23.48
MachineB 60.322 2.229 27.06
MachineC 66.272 2.229 29.73
Correlation of Fixed Effects:
MachnA MachnB
MachineB 0.888
MachineC 0.888 0.888
当我在 STAN 中使用 建模时rstanarm
,我得到了完全不同的输出:
library(rstanarm)
fit2a <- stan_glmer(score ~ -1 + Machine + (1|Worker), data=Machines)
fit2a
stan_glmer(formula = score ~ -1 + Machine + (1 | Worker), data = Machines)
Estimates:
Median MAD_SD
MachineA -6.3 24.4
MachineB 1.6 24.3
MachineC 7.5 24.4
sigma 3.6 0.4
Error terms:
Groups Name Std.Dev.
Worker (Intercept) 38.2
Residual 3.6
Num. levels: Worker 6
Sample avg. posterior predictive
distribution of y (X = xbar):
Median MAD_SD
mean_PPD 59.6 0.7
我的解释是这样的:我通过将 mean_PPD 添加到估计值来获得固定效应,例如 lme 中的 59.6-6.3 = 53.3 ~ 52.3。
stan 输出中的误差项是随机效应吗?为什么它使用中位数进行估计,或者这是一个rstanarm特定的东西?