混合模型中的 t 检验和 F 检验之间的巨大差异(anova 与 lmerTest 中的摘要)

机器算法验证 假设检验 混合模式 t检验 lme4-nlme f检验
2022-04-08 12:06:02

在帮助其他人进行分析时,我遇到了一个关于 lme4 for R 中线性混合模型的 t 检验和 F 检验之间差异的问题,由 lmerTest 提供。我知道为线性混合模型计算任何类型的 p 值的问题(据我了解,主要是因为自由度的定义是有问题的),以及解释主要影响的问题显着交互的存在(基于边际原则)。

简而言之,数据来自具有两个条件(一致性真/假)的实验,在六组传感器上测量,这些传感器可以描述为两个因素的组合:前向性(前/后)和侧向性(左/中/右) .

从下面的总结输出中可以看出,t.tests 没有显示出显着的一致性效应(p = 0.12),而 anova 输出显示出非常显着的一致性效应(p = 2.8e-10)。由于一致性只有两个水平,这不可能是 F 检验对固定因子的多个水平进行综合检验的结果。因此,我不确定是什么导致了方差分析输出中非常显着的结果。这是因为存在涉及一致性的强相互作用,这当然取决于在模型参数化中包含主效应吗?

我已经在 CrossValidated 上寻找了这个问题的先前答案,但除了可能是这个问题的第一个答案之外,我找不到任何相关的东西但是,如果这确实提供了一个真正的答案,那么它就隐含在数学中,我正在寻找一个概念性的答案,我可以向我试图帮助的人解释。

> final.mod<-lmer(uV~1+factor(congruity)*factor(laterality)*factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(final.mod)
Linear mixed model fit by REML 

t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) * factor(laterality) * factor(anteriority) +      (1 | sent.id) + (1 | Subject)
   Data: selected.data
REML criterion at convergence: 348903.5
Scaled residuals: 
Min      1Q  Median      3Q     Max 
-7.0440 -0.6002  0.0069  0.6038 11.3912 
Random effects:
 Groups   Name        Variance Std.Dev.
 sent.id  (Intercept)   1.773   1.332  
 Subject  (Intercept)   2.548   1.596  
 Residual             111.396  10.554  
Number of obs: 46176, groups:  sent.id, 41; Subject, 30
Fixed effects:
                                                                     Estimate Std. Error         df t value Pr(>|t|)  
(Intercept)                                                                 4.768e-03  3.973e-01  7.900e+01   0.012   0.9905  
factor(congruity)TRUE                                                       3.758e-01  2.410e-01  4.611e+04   1.559   0.1189  
factor(laterality)left                                                      7.154e-02  2.430e-01  4.610e+04   0.294   0.7685  
factor(laterality)right                                                    -2.003e-01  2.430e-01  4.610e+04  -0.824   0.4098  
factor(anteriority)posterior                                               -4.203e-02  2.430e-01  4.610e+04  -0.173   0.8627
factor(congruity)TRUE:factor(laterality)left                               -1.013e-01  3.404e-01  4.610e+04  -0.298   0.7660
factor(congruity)TRUE:factor(laterality)right                               7.233e-02  3.404e-01  4.610e+04   0.213   0.8317
factor(congruity)TRUE:factor(anteriority)posterior                          6.162e-01  3.404e-01  4.610e+04   1.810   0.0702 .
factor(laterality)left:factor(anteriority)posterior                         2.568e-01  3.437e-01  4.610e+04   0.747   0.4549
factor(laterality)right:factor(anteriority)posterior                        1.763e-01  3.437e-01  4.610e+04   0.513   0.6080
factor(congruity)TRUE:factor(laterality)left:factor(anteriority)posterior  -5.162e-02  4.813e-01  4.610e+04  -0.107   0.9146
factor(congruity)TRUE:factor(laterality)right:factor(anteriority)posterior -2.420e-01  4.813e-01  4.610e+04  -0.503   0.6152  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
                          (Intr) fc()TRUE fctr(ltrlty)l fctr(ltrlty)r fctr(n) fctr(cngrty)TRUE:fctr(ltrlty)l fctr(cngrty)TRUE:fctr(ltrlty)r
fctr(c)TRUE                       -0.310
fctr(ltrlty)l                     -0.306  0.504
fctr(ltrlty)r                     -0.306  0.504    0.500
fctr(ntrrt)                       -0.306  0.504    0.500         0.500
fctr(cngrty)TRUE:fctr(ltrlty)l     0.218 -0.706   -0.714        -0.357        -0.357
fctr(cngrty)TRUE:fctr(ltrlty)r     0.218 -0.706   -0.357        -0.714        -0.357   0.500
fctr(cngrty)TRUE:fctr(n)           0.218 -0.706   -0.357        -0.357        -0.714   0.500                          0.500
fctr(ltrlty)l:()                   0.216 -0.357   -0.707        -0.354        -0.707   0.505                          0.252
fctr(ltrlty)r:()                   0.216 -0.357   -0.354        -0.707        -0.707   0.252                          0.505
fctr(cngrty)TRUE:fctr(ltrlty)l:() -0.154  0.499    0.505         0.252         0.505  -0.707                         -0.354
fctr(cngrty)TRUE:fctr(ltrlty)r:() -0.154  0.499    0.252         0.505         0.505  -0.354                         -0.707                        
                          fctr(cngrty)TRUE:fctr(n) fctr(ltrlty)l:() fctr(ltrlty)r:() fctr(cngrty)TRUE:fctr(ltrlty)l:()
fctr(c)TRUE
fctr(ltrlty)l
fctr(ltrlty)r
fctr(ntrrt)
fctr(cngrty)TRUE:fctr(ltrlty)l
fctr(cngrty)TRUE:fctr(ltrlty)r
fctr(cngrty)TRUE:fctr(n)
fctr(ltrlty)l:()                   0.505
fctr(ltrlty)r:()                   0.505                    0.500
fctr(cngrty)TRUE:fctr(ltrlty)l:() -0.707                   -0.714           -0.357                                            
fctr(cngrty)TRUE:fctr(ltrlty)r:() -0.707                   -0.357           -0.714            0.500                           
> anova(final.mod)
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                                                 Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
factor(congruity)                                        4439.1  4439.1     1 46142  39.850 2.768e-10 ***
factor(laterality)                                        572.9   286.5     2 46095   2.572  0.076430 .  
factor(anteriority)                                      1508.1  1508.1     1 46095  13.538  0.000234 ***
factor(congruity):factor(laterality)                       31.6    15.8     2 46095   0.142  0.867581    
factor(congruity):factor(anteriority)                     775.1   775.1     1 46095   6.958  0.008349 ** 
factor(laterality):factor(anteriority)                    111.9    56.0     2 46095   0.502  0.605126  
factor(congruity):factor(laterality):factor(anteriority)   31.2    15.6     2 46095   0.140  0.869183    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

回复@Aurelie 的问题:

> congruity.mod<-lmer(uV~1+factor(congruity)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(congruity.mod)
Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) + (1 | sent.id) + (1 | Subject)
   Data: selected.data
REML criterion at convergence: 494077.2
Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-10.1673  -0.5790  -0.0097   0.5818  12.6088 

Random effects:
 Groups   Name        Variance Std.Dev.
 sent.id  (Intercept)   4.568   2.137  
 Subject  (Intercept)   6.132   2.476  
 Residual             178.137  13.347  
Number of obs: 61568, groups:  sent.id, 41; Subject, 30

Fixed effects:
                         Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                0.6055     0.5671    57.0000   1.068     0.29    
factor(congruity)FALSE    -0.7105     0.1084 61535.0000  -6.558 5.51e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr)
fctr()FALSE -0.093
> anova(congruity.mod)
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                  Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
factor(congruity) 7660.5  7660.5     1 61535  43.004 5.507e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> laterality.mod<-lmer(uV~1+factor(laterality)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(laterality.mod)
Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(laterality) + (1 | sent.id) + (1 | Subject)
   Data: selected.data

REML criterion at convergence: 372848.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-9.7033 -0.5981 -0.0076  0.6006 12.2265 

Random effects:
 Groups   Name        Variance Std.Dev.
 sent.id  (Intercept)   5.568   2.360  
 Subject  (Intercept)   6.777   2.603  
 Residual             186.966  13.674  
Number of obs: 46176, groups:  sent.id, 41; Subject, 30

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                 0.8128     0.6115    61.0000   1.329  0.18877    
factor(laterality)left     -0.4260     0.1559 46105.0000  -2.733  0.00628 ** 
factor(laterality)right    -0.6709     0.1559 46105.0000  -4.304 1.68e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
              (Intr) fctr(ltrlty)l
fctr(ltrlty)l -0.127              
fctr(ltrlty)r -0.127  0.500       
> anova(laterality.mod)
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                   Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
factor(laterality) 3548.2  1774.1     2 46105  9.4889 7.584e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> anteriority.mod<-lmer(uV~1+factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(anteriority.mod)
Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(anteriority) + (1 | sent.id) + (1 | Subject)
   Data: selected.data

REML criterion at convergence: 372738.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-9.6668 -0.5986 -0.0032  0.6017 12.2711 

Random effects:
 Groups   Name        Variance Std.Dev.
 sent.id  (Intercept)   5.569   2.360  
 Subject  (Intercept)   6.777   2.603  
 Residual             186.525  13.657  
Number of obs: 46176, groups:  sent.id, 41; Subject, 30

Fixed effects:
                           Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                     -0.2693     0.6081    59.0000  -0.443     0.66    
factor(anteriority)posterior     1.4328     0.1271 46105.0000  11.272   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr)
fctr(ntrrt) -0.105
> anova(anteriority.mod)
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                    Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
factor(anteriority)  23700   23700     1 46106  127.06 < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

更新:根据@Henrik 的回答更新对比后:

> options(contrasts=c("contr.sum","contr.poly"))
> final.mod<-lmer(uV~1+factor(congruity)*factor(laterality)*factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(final.mod)
Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) * factor(laterality) *     factor(anteriority) +      (1 | sent.id) + (1 | Subject)
   Data: selected.data

REML criterion at convergence: 372689.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-9.6772 -0.5979 -0.0016  0.5977 12.3439 

Random effects:
 Groups   Name        Variance Std.Dev.
 sent.id  (Intercept)   5.556   2.357  
 Subject  (Intercept)   6.752   2.599  
 Residual             186.232  13.647  
Number of obs: 46176, groups:  sent.id, 41; Subject, 30

Fixed effects:
                                                              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                                                  4.355e-01  6.039e-01  5.800e+01   0.721   0.4737    
factor(congruity)1                                           4.501e-01  6.396e-02  4.613e+04   7.037 1.99e-12 ***
factor(laterality)1                                          3.628e-01  8.983e-02  4.610e+04   4.039 5.38e-05 ***
factor(laterality)2                                         -5.732e-02  8.983e-02  4.610e+04  -0.638   0.5234    
factor(anteriority)1                                        -7.183e-01  6.352e-02  4.610e+04 -11.308  < 2e-16 ***
factor(congruity)1:factor(laterality)1                       1.433e-01  8.983e-02  4.610e+04   1.596   0.1106    
factor(congruity)1:factor(laterality)2                      -1.535e-01  8.983e-02  4.610e+04  -1.709   0.0875 .  
factor(congruity)1:factor(anteriority)1                      9.442e-02  6.352e-02  4.610e+04   1.487   0.1371    
factor(laterality)1:factor(anteriority)1                     2.282e-01  8.983e-02  4.610e+04   2.540   0.0111 *  
factor(laterality)2:factor(anteriority)1                    -2.121e-01  8.983e-02  4.610e+04  -2.362   0.0182 *  
factor(congruity)1:factor(laterality)1:factor(anteriority)1 -7.802e-03  8.983e-02  4.610e+04  -0.087   0.9308    
factor(congruity)1:factor(laterality)2:factor(anteriority)1 -1.141e-02  8.983e-02  4.610e+04  -0.127   0.8989    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
                       (Intr) fctr(c)1 fctr(l)1 fct()2 fctr(n)1     fctr(cngrty)1:fctr(l)1 fc()1:()2 fctr(cngrty)1:fctr(n)1
fctr(cngr)1            -0.003                                                                                          
fctr(ltrl)1             0.000  0.000                                                                                   
fctr(ltrl)2             0.000  0.000   -0.500                                                                          
fctr(ntrr)1             0.000  0.000    0.000    0.000                                                                 
fctr(cngrty)1:fctr(l)1  0.000  0.000   -0.020    0.010  0.000                                                          
fctr()1:()2             0.000  0.000    0.010   -0.020  0.000   -0.500                                                 
fctr(cngrty)1:fctr(n)1  0.000  0.000    0.000    0.000 -0.020    0.000                  0.000                          
fctr(l)1:()1            0.000  0.000    0.000    0.000  0.000    0.000                  0.000     0.000                
fctr()2:()1             0.000  0.000    0.000    0.000  0.000    0.000                  0.000     0.000                
f()1:()1:()             0.000  0.000    0.000    0.000  0.000    0.000                  0.000     0.000                
f()1:()2:()             0.000  0.000    0.000    0.000  0.000    0.000                  0.000     0.000                
                       fctr(l)1:()1 f()2:( f()1:()1:
fctr(cngr)1                                         
fctr(ltrl)1                                         
fctr(ltrl)2                                         
fctr(ntrr)1                                         
fctr(cngrty)1:fctr(l)1                              
fctr()1:()2                                         
fctr(cngrty)1:fctr(n)1                              
fctr(l)1:()1                                        
fctr()2:()1            -0.500                       
f()1:()1:()            -0.020        0.010          
f()1:()2:()             0.010       -0.020 -0.500   
> anova(final.mod)
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                                                          Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
factor(congruity)                                         9221.9  9221.9     1 46129  49.518 1.993e-12 ***
factor(laterality)                                        3511.5  1755.7     2 46095   9.428 8.062e-05 ***
factor(anteriority)                                      23814.0 23814.0     1 46095 127.873 < 2.2e-16 ***
factor(congruity):factor(laterality)                       680.3   340.1     2 46095   1.826   0.16101    
factor(congruity):factor(anteriority)                      411.5   411.5     1 46095   2.210   0.13714    
factor(laterality):factor(anteriority)                    1497.4   748.7     2 46095   4.020   0.01796 *  
factor(congruity):factor(laterality):factor(anteriority)     8.6     4.3     2 46095   0.023   0.97713    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1个回答

III 类测试需要对低阶效应进行正确编码才能有意义,特别是正交对比。R 默认contr.treatment不是正交的,但其他对比是(例如,contr.sum)。在您的代码中,您使用的似乎没有更改默认值,因此您的结果是所谓的简单主效应。我们将在此处即将发布的章节中讨论这一点,但其他参考资料很容易找到

要使用正确的对比,请在 R 中拟合混合模型之前运行以下命令:

options(contrasts=c("contr.sum","contr.poly"))

一个更容易记住的代码是set_sum_contrasts() 从我的afex包中使用:

afex::set_sum_contrasts()

如果这不能解决您的问题,请更新您的问题(最好使用数据重新创建问题)。