你试过了吗?听起来应该没问题。
set.seed(101)
## generate fully crossed design:
d <- expand.grid(Year=2000:2010,Site=1:30)
## sample 70% of the site/year comb to induce lack of balance
d <- d[sample(1:nrow(d),size=round(0.7*nrow(d))),]
## now get Poisson-distributed number of obs per site/year
library(plyr)
d <- ddply(d,c("Site","Year"),transform,rep=seq(rpois(1,lambda=10)))
library(lme4)
d$ticks <- simulate(~1+(1|Year)+(1|Site)+(1|Year:Site),
family=poisson,newdata=d,
newparams=list(beta=2, ## mean(log(ticks))=2
theta=c(1,1,1)))[[1]]
mm <- glmer(ticks~1+(1|Year)+(1|Site)+(1|Year:Site),
family=poisson,data=d)
我们大致得出了我们输入的内容——每个级别的方差相等:
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: ticks ~ 1 + (1 | Year) + (1 | Site) + (1 | Year:Site)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 12487.3 12510.2 -6239.7 12479.3 2267
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9944 -0.6842 -0.0726 0.6010 3.8532
##
## Random effects:
## Groups Name Variance Std.Dev.
## Year:Site (Intercept) 1.0818 1.0401
## Site (Intercept) 1.0490 1.0242
## Year (Intercept) 0.9787 0.9893
## Number of obs: 2271, groups: Year:Site, 231 Site, 30 Year, 11
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.1952 0.3593 6.109 1e-09 ***
## ---
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
您可能希望包含观察级别的随机效应以允许过度分散(请参阅http://rpubs.com/bbolker/glmmchapter中的“松鸡蜱”示例)