在阅读 VAR 模型教程时,我对以下关于自相关 Portmanteau 检验的摘录感到困惑。
我的问题是:
1)如何解释以下演示的结果?
2)作者如何得出VAR(3)模型更合适的结论,以及基于什么标准?
3)假设(我不知道这是否是正确的假设)自相关是 VAR( ) 预测的理想特征,为什么作者在拒绝 VAR( 1)?
> #vector autoregression with lag1
> var = VAR(climate2.ts, p=1)
#It is important now to test for serial autocorrelation in the model
#residuals and below is for the Portmanteau test (several options in the vars
#package are available).
> serial.test(var, lags.pt=10, type=”PT.asymptotic”)
Portmanteau Test (asymptotic)
data: Residuals of VAR object var
Chi-squared = 55.4989, df = 36, p-value = 0.01996
#The null hypothesis is no serial correlation, so we can reject it with extreme
#prejudice…on to var3
> var3 = VAR(climate2.ts, p=3)
> serial.test(var3, lags.pt=10, type=”PT.asymptotic”)
Portmanteau Test (asymptotic)
data: Residuals of VAR object var3
Chi-squared = 36.1256, df = 28, p-value = 0.1394
#That is more like it.
#You can review the details of the var model, in this case temperature, if you so choose:
> summary(var3, equation=”d.temp”)