如果我理解这篇论文,如果我错了,请纠正我:
A common effect, usually associated with unstable zeroes and poles of the open
loop plant, makes it theoretically impossible to make certain closed loop transfer
functions “small” simultaneously at all frequencies:
这是关于可实现控制系统中的零极点消除。本质上:
1s−α
但是对于阶跃响应是不稳定的:
s−α1s−α2=1
其中α1=α2
哪个是稳定的;但是,由于参数变化(电阻/电容容差),不可能消除不稳定的极点。alpha_1 和 alpha_2 可能永远不会完全对齐以相互抵消。(也许通过数字控制)
if amplitude of the frequency
response is reduced in one part of the spectrum, it may have to get larger in the other
part. This effect, sometimes called the waterbed effect, can be explained mathematically
in terms of integral inequalities imposed on the closed loop transfer functions.
基本上,如果 alpha_1 增加,那么这种“水床效应”是由 alpha_2 拉低频率响应引起的,因为 alpha_1 零开始起作用。
本质上,如果它们不匹配,频率响应将如下所示:
--------\
\
\-------------
当它们完全匹配时,而不是这样:
----------------------------------
(即平坦的响应)
如果相反的情况发生(alpha_2 变大,您应该会看到此响应的相反效果)
-----------------
/
/
-----/
.
In the basis of such results is the affine characterization of all possible
closed loop responses, as well as the Cauchy integral relation for analytical
functions.
这篇论文回答: