conv2d
开启模式时same
,图像不需要填充,因为结果与图像大小相同。
conv2d
开启模式时full
,结果为 (image_width + kernel_width -1) * (image_height + kernel_height -1)。
那么如何填充图像?
conv2d
开启模式时same
,图像不需要填充,因为结果与图像大小相同。
conv2d
开启模式时full
,结果为 (image_width + kernel_width -1) * (image_height + kernel_height -1)。
那么如何填充图像?
我创建了一个基本上conv2()
应用于频域的 MATLAB 函数:
function [ mO ] = ImageConvFrequencyDomain( mI, mH, convShape )
% ----------------------------------------------------------------------------------------------- %
% [ mO ] = ImageConvFrequencyDomain( mI, mH, convShape )
% Applies Image Convolution in the Frequency Domain.
% Input:
% - mI - Input Image.
% Structure: Matrix.
% Type: 'Single' / 'Double' (Single Channel).
% Range: (-inf, inf).
% - mH - Filtering Kernel.
% Structure: Matrix.
% Type: 'Single' / 'Double'.
% Range: (-inf, inf).
% - convShape - Convolution Shape.
% Sets the convolution shape.
% Structure: Scalar.
% Type: 'Single' / 'Double'.
% Range: {1, 2, 3}.
% Output:
% - mI - Output Image.
% Structure: Matrix (Single Channel).
% Type: 'Single' / 'Double'.
% Range: (-inf, inf).
% References:
% 1. MATLAB's 'conv2()' - https://www.mathworks.com/help/matlab/ref/conv2.html.
% Remarks:
% 1. A
% TODO:
% 1.
% Release Notes:
% - 1.0.000 29/04/2021 Royi Avital RoyiAvital@yahoo.com
% * First release version.
% ----------------------------------------------------------------------------------------------- %
CONV_SHAPE_FULL = 1;
CONV_SHAPE_SAME = 2;
CONV_SHAPE_VALID = 3;
numRows = size(mI, 1);
numCols = size(mI, 2);
numRowsKernel = size(mH, 1);
numColsKernel = size(mH, 2);
switch(convShape)
case(CONV_SHAPE_FULL)
numRowsFft = numRows + numRowsKernel - 1;
numColsFft = numCols + numColsKernel - 1;
firstRowIdx = 1;
firstColIdx = 1;
lastRowIdx = numRowsFft;
lastColdIdx = numColsFft;
case(CONV_SHAPE_SAME)
numRowsFft = numRows + numRowsKernel;
numColsFft = numCols + numColsKernel;
firstRowIdx = ceil((numRowsKernel + 1) / 2);
firstColIdx = ceil((numColsKernel + 1) / 2);
lastRowIdx = firstRowIdx + numRows - 1;
lastColdIdx = firstColIdx + numCols - 1;
case(CONV_SHAPE_VALID)
numRowsFft = numRows;
numColsFft = numCols;
firstRowIdx = numRowsKernel;
firstColIdx = numColsKernel;
% The Kernel when transformed is shifted (Namely its (0, 0) is top
% left not middle).
lastRowIdx = numRowsFft;
lastColdIdx = numColsFft;
end
mO = ifft2(fft2(mI, numRowsFft, numColsFft) .* fft2(mH, numRowsFft, numColsFft), 'symmetric');
mO = mO(firstRowIdx:lastRowIdx, firstColIdx:lastColdIdx);
end
它完全兼容并经过验证。
完整代码可在我的StackExchange Signal Processing Q74803 GitHub 存储库中找到(查看SignalProcessing\Q74803
文件夹)。