为什么随机变量的可交换性在分层贝叶斯模型中至关重要?

机器算法验证 贝叶斯 多层次分析 可交换性
2022-03-07 12:27:25

为什么随机变量的可交换性对于分层贝叶斯建模至关重要?

3个回答

可交换性不是分层模型的基本特征(至少在观察级别上不是)。它基本上是标准文献中“独立同分布”的贝叶斯类似物。它只是描述您对当前情况的了解的一种方式。这就是“洗牌”不会改变你的问题。我想这样想的一种方法是考虑给你的情况xj=5但你没有被告知价值j. 如果学那个xj=5会导致您怀疑j比其他人多,那么序列是不可交换的。如果它什么也没告诉你j,则序列是可交换的。请注意,可交换性是“在信息中”而不是“在现实中”——这取决于你所知道的。

虽然就观察到的变量而言,可交换性并不是必不可少的,但如果没有一些可交换性的概念,可能很难拟合任何模型,因为没有可交换性,您基本上没有理由将观察结果汇总在一起。所以我的猜测是,如果你在模型的某个地方没有可交换性,你的推论会弱得多。例如,考虑xiN(μi,σi)为了i=1,,N. 如果xi是完全可交换的,那么这意味着μi=μσi=σ. 如果xi有条件地交换给定μi那么这意味着σi=σ. 如果xi有条件地交换给定σi那么这意味着μi=μ. 但请注意,在这两种“有条件可交换”情况中的任何一种情况下,与第一种情况相比,推理的质量都会降低,因为有一个额外的N引入问题的参数。如果我们没有可交换性,那么我们基本上有N无关的问题。

基本上可交换性意味着我们可以做出推断X一世参数Xj对于任何一世j可部分交换

“基本”太模糊了。但是压制技术细节,如果序列X={X一世}是可交换的X一世给定一些未观察到的参数是条件独立的θ具有概率分布π. That is, p(X)=p(Xi|Θ)dπ(Θ). Θ needn't be univariate or even finite dimensional and may be further represented as a mixture, etc.

Exchangability is essential in the sense that these conditional independence relationships allow us to fit models we almost certainly couldn't otherwise.

It isn't! I'm no expert here, but i'll give my two cents. In general when you have a hierarchical model, say

y|Θ1N(XΘ1,σ2)

Θ1|Θ2N(WΘ2,σ2)

We make conditional independence assumptions, i.e., conditional on Θ2, the Θ1 are exchangeable. If the second level is not exchangeable, than you can incluce another level that makes it exchangeable. But even in the case that you can't make an assumption of exchaganbelity, the model may still be a good fit to your data at the first level.

Last, but not least, exchangeability is important only if you wanna think in terms of De Finetti's representation theorem. You might just think that priors are regularization tools that help you to fit your model. In this case, the exchangeability assumption is as good as it is your model fit to the data. In other words, if you think of Bayesian hierarchical model as way to get abetter fit to your data, then exchangeability is not essential in any sense.