我可以添加一个随机效应来解释一个因素内的巨大差异吗?

机器算法验证 r 混合模式 lme4-nlme 标准错误 事后
2022-03-30 15:19:50

实验和数据

我正在进行的实验具有以下设计:

ABCDEF
BADEFC
ABEFCD
BAFCDE

  • 每个字母代表本实验分析的称为“系统”的单一因素的不同水平。该数据集包含八年,我们正在分析的因变量是yieldA 和 B 可以根据系统类型组合在一起,C 到 F 也可以组合在一起。
  • 我知道 AB 组和 CDEF 组之间缺少随机化,这是由于法规所必需的,以及这两个组中缺少随机化,遗憾的是,这根本没有进行。然而,这些可以看作是完整的
  • 我正在调查系统之间的产量是否存在显着差异 (AF)

我的数据如下所示:

> str(data)
'data.frame':   192 obs. of  6 variables:
 $ year  : Factor w/ 8 levels "2012","2013",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ type  : Factor w/ 2 levels "org","pest": 1 1 1 1 1 1 1 1 1 1 ...
 $ system: Factor w/ 6 levels "dgst_org","cc_pest",..: 3 3 3 3 5 5 5 5 6 6 ...
 $ row   : Factor w/ 4 levels "row_1","row_2",..: 1 2 3 4 2 3 4 1 3 4 ...
 $ column: Factor w/ 6 levels "column_1","column_2",..: 6 5 4 3 6 5 4 3 6 5 ...
 $ yield : num  26.2 41.4 43.4 45 40.8 52.3 47.1 47.2 40.1 42.4 ...

> summary(data)
      year      type             system      row          column       yield       
 2012   :24   org :128   dgst_org   :32   row_1:48   column_1:32   Min.   : 26.20  
 2013   :24   pest: 64   cc_pest    :32   row_2:48   column_2:32   1st Qu.: 52.30  
 2014   :24              cc_org     :32   row_3:48   column_3:32   Median : 62.95  
 2015   :24              manure_pest:32   row_4:48   column_4:32   Mean   : 73.79  
 2016   :24              manure_org :32              column_5:32   3rd Qu.:103.83  
 2017   :24              fmyd_org   :32              column_6:32   Max.   :127.10  

> head(data)
    year type     system   row   column yield
377 2012  org     cc_org row_1 column_6  26.2
378 2012  org     cc_org row_2 column_5  41.4
379 2012  org     cc_org row_3 column_4  43.4
380 2012  org     cc_org row_4 column_3  45.0
417 2012  org manure_org row_2 column_6  40.8
418 2012  org manure_org row_3 column_5  52.3
419 2012  org manure_org row_4 column_4  47.1
420 2012  org manure_org row_1 column_3  47.2
461 2012  org   fmyd_org row_3 column_6  40.1
462 2012  org   fmyd_org row_4 column_5  42.4

我之前的尝试

  1. 我的第一个模型是根据Piepho 和 Edmondson (2018)的教程创建的:
    m1 <- lmer(yield ~ system + (1|year/row) + (1|year:system)
    他们建议重复测量以将年份作为随机效应包括重复的嵌套效应()以及与主效应系统的交互
  2. 我还研究了一个模型,其中年份是固定效应,因为我也对年份的差异和每年的系统差异感兴趣:
    m2 <- lmer(yield ~ system * year + (1|row), data = data)
  3. 我比较了这两个模型,检查了它们的摘要,并对函数进行了事后测试,得出了不同的emmeans()结果。
    • m1的 std.err 要高得多。m2相比,因此在系统的成对比较中发现的差异较小
    • m1的 AIC 较高,但 BIC 比m2低
    • 两个模型的残差图和QQ图看起来都很好
  4. 我假设性病的高增长。呃。添加(1|year:system)随机交互后,与基线模型相比,这与两种系统类型m0之间的巨大产量差异有关,因此我尝试通过添加变量来解释这一点 我将它添加为与 year 的随机交互,因为我希望它是一个随机效果,但只有两个级别,我无法将它添加为单个随机效果:type

    m3 <- lmer(yield ~ system + (1|year/row) + (1|year:system) + (1|year:type))
  5. 现在再次比较模型,以及他们的事后测试,我注意到:
    • 标准。呃。m3系统类型中有所不同,因此在像m1这样的系统的成对比较中得到了类似的结果
    • m1的 AIC 仍然最低,m3的 AIC低于m2

我的问题

  • 我现在不确定该选择哪个模型,我担心m2的交互项掩盖了同一类型系统之间的差异(1|year:system)尤其org类型的系统(实验设计中的 ABCD)。

  • m1似乎是一个很好的模型,但具有固定效应,而m3满足所有要求并很好地检测到相同类型的系统之间的差异(因为 post hoc 测试中系统类型的 std.err. 不同)

  • (1|year:type)但是考虑到两种系统类型的巨大产量差异,添加这种随机效应是否合法


添加摘要

#The models
> m0 <- lmer(yield ~ system + (1|row), data = data)
> m1 <- lmer(yield ~ system + (1|year) + (1|year:system) + (1|year:row), data = data)
> m2 <- lmer(yield ~ system * year + (1|row), data = data)
> m3 <- lmer(yield ~ system + (1|year) + (1|year:system) + (1|year:type) + (1|year:row), data = data)

#Model Compairison
> anova(m0,m1,m2,m3)
refitting model(s) with ML (instead of REML)
Data: data
Models:
m0: yield ~ system + (1 | row)
m1: yield ~ system + (1 | year) + (1 | year:system) + (1 | year:row)
m3: yield ~ system + (1 | year) + (1 | year:system) + (1 | year:type) + (1 | year:row)
m2: yield ~ system * year + (1 | row)
   npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
m0    8 1414.6 1440.7 -699.30   1398.6                         
m1   10 1305.3 1337.9 -642.67   1285.3 113.26  2  < 2.2e-16 ***
m3   11 1283.7 1319.6 -630.86   1261.7  23.61  1  1.180e-06 ***
m2   50 1215.6 1378.5 -557.80   1115.6 146.13 39  2.681e-14 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

#Model Summaries
> summary(m0)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: yield ~ system + (1 | row)
   Data: data

REML criterion at convergence: 1380.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.9797 -0.7010  0.0885  0.6564  3.1912 

Random effects:
 Groups   Name        Variance Std.Dev.
 row      (Intercept)  2.503   1.582   
 Residual             86.550   9.303   
Number of obs: 192, groups:  row, 4

Fixed effects:
                  Estimate Std. Error       df t value Pr(>|t|)    
(Intercept)        53.2375     1.8250  26.7856  29.172  < 2e-16 ***
systemcc_pest      56.3094     2.3258 183.0000  24.211  < 2e-16 ***
systemdgst_org      9.7438     2.3258 183.0000   4.189 4.35e-05 ***
systemfmyd_org     -0.9781     2.3258 183.0000  -0.421    0.675    
systemmanure_org    1.3750     2.3258 183.0000   0.591    0.555    
systemmanure_pest  56.8906     2.3258 183.0000  24.461  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) systmc_ systmd_ systmf_ systmmnr_r
systmcc_pst -0.637                                   
systmdgst_r -0.637  0.500                            
systmfmyd_r -0.637  0.500   0.500                    
systmmnr_rg -0.637  0.500   0.500   0.500            
systmmnr_ps -0.637  0.500   0.500   0.500   0.500    

> summary(m1)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: yield ~ system + (1 | year) + (1 | year:system) + (1 | year:row)
   Data: data

REML criterion at convergence: 1262.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.2609 -0.4988  0.0592  0.5590  2.3885 

Random effects:
 Groups      Name        Variance Std.Dev.
 year:system (Intercept) 43.868   6.623   
 year:row    (Intercept)  2.276   1.509   
 year        (Intercept) 22.305   4.723   
 Residual                26.442   5.142   
Number of obs: 192, groups:  year:system, 48; year:row, 32; year, 8

Fixed effects:
                  Estimate Std. Error      df t value Pr(>|t|)    
(Intercept)        53.2375     3.0281 28.2596  17.581  < 2e-16 ***
systemcc_pest      56.3094     3.5524 34.9998  15.851  < 2e-16 ***
systemdgst_org      9.7438     3.5524 34.9998   2.743  0.00954 ** 
systemfmyd_org     -0.9781     3.5524 34.9998  -0.275  0.78467    
systemmanure_org    1.3750     3.5524 34.9998   0.387  0.70105    
systemmanure_pest  56.8906     3.5524 34.9998  16.015  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) systmc_ systmd_ systmf_ systmmnr_r
systmcc_pst -0.587                                   
systmdgst_r -0.587  0.500                            
systmfmyd_r -0.587  0.500   0.500                    
systmmnr_rg -0.587  0.500   0.500   0.500            
systmmnr_ps -0.587  0.500   0.500   0.500   0.500    

> summary(m2)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: yield ~ system * year + (1 | row)
   Data: data

REML criterion at convergence: 944.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.5152 -0.5168  0.0678  0.5333  2.5714 

Random effects:
 Groups   Name        Variance Std.Dev.
 row      (Intercept)  3.787   1.946   
 Residual             24.931   4.993   
Number of obs: 192, groups:  row, 4

Fixed effects:
                           Estimate Std. Error      df t value Pr(>|t|)    
(Intercept)                  39.000      2.679  79.240  14.555  < 2e-16 ***
systemcc_pest                77.475      3.531 141.000  21.943  < 2e-16 ***
systemdgst_org               16.750      3.531 141.000   4.744 5.08e-06 ***
systemfmyd_org                0.425      3.531 141.000   0.120 0.904359    
systemmanure_org              7.850      3.531 141.000   2.223 0.027782 *  
systemmanure_pest            73.775      3.531 141.000  20.895  < 2e-16 ***
year2013                      9.200      3.531 141.000   2.606 0.010152 *  
year2014                     11.850      3.531 141.000   3.356 0.001015 ** 
year2015                      0.525      3.531 141.000   0.149 0.882006    
year2016                     20.250      3.531 141.000   5.735 5.70e-08 ***
year2017                     21.350      3.531 141.000   6.047 1.26e-08 ***
year2018                     37.575      3.531 141.000  10.642  < 2e-16 ***
year2019                     13.150      3.531 141.000   3.724 0.000282 ***
systemcc_pest:year2013      -14.950      4.993 141.000  -2.994 0.003252 ** 
systemdgst_org:year2013       3.350      4.993 141.000   0.671 0.503368    
systemfmyd_org:year2013       6.175      4.993 141.000   1.237 0.218255    
systemmanure_org:year2013     1.975      4.993 141.000   0.396 0.693040    
systemmanure_pest:year2013  -10.450      4.993 141.000  -2.093 0.038152 *  
systemcc_pest:year2014      -15.325      4.993 141.000  -3.069 0.002575 ** 
systemdgst_org:year2014       4.300      4.993 141.000   0.861 0.390600    
systemfmyd_org:year2014       5.400      4.993 141.000   1.081 0.281328    
systemmanure_org:year2014     0.800      4.993 141.000   0.160 0.872937    
systemmanure_pest:year2014  -13.900      4.993 141.000  -2.784 0.006110 ** 
systemcc_pest:year2015      -16.550      4.993 141.000  -3.315 0.001167 ** 
systemdgst_org:year2015      -0.725      4.993 141.000  -0.145 0.884761    
systemfmyd_org:year2015       2.650      4.993 141.000   0.531 0.596442    
systemmanure_org:year2015    -8.025      4.993 141.000  -1.607 0.110246    
systemmanure_pest:year2015  -10.925      4.993 141.000  -2.188 0.030316 *  
systemcc_pest:year2016      -22.675      4.993 141.000  -4.541 1.19e-05 ***
systemdgst_org:year2016     -13.825      4.993 141.000  -2.769 0.006383 ** 
systemfmyd_org:year2016       2.050      4.993 141.000   0.411 0.682016    
systemmanure_org:year2016   -10.625      4.993 141.000  -2.128 0.035083 *  
systemmanure_pest:year2016  -22.000      4.993 141.000  -4.406 2.07e-05 ***
systemcc_pest:year2017      -39.100      4.993 141.000  -7.831 1.05e-12 ***
systemdgst_org:year2017     -15.025      4.993 141.000  -3.009 0.003104 ** 
systemfmyd_org:year2017     -10.100      4.993 141.000  -2.023 0.044987 *  
systemmanure_org:year2017    -9.975      4.993 141.000  -1.998 0.047668 *  
systemmanure_pest:year2017  -26.750      4.993 141.000  -5.357 3.36e-07 ***
systemcc_pest:year2018      -49.825      4.993 141.000  -9.979  < 2e-16 ***
systemdgst_org:year2018     -20.625      4.993 141.000  -4.131 6.17e-05 ***
systemfmyd_org:year2018     -13.250      4.993 141.000  -2.654 0.008877 ** 
systemmanure_org:year2018   -19.025      4.993 141.000  -3.810 0.000207 ***
systemmanure_pest:year2018  -47.400      4.993 141.000  -9.493  < 2e-16 ***
systemcc_pest:year2019      -10.900      4.993 141.000  -2.183 0.030691 *  
systemdgst_org:year2019     -13.500      4.993 141.000  -2.704 0.007701 ** 
systemfmyd_org:year2019      -4.150      4.993 141.000  -0.831 0.407299    
systemmanure_org:year2019    -6.925      4.993 141.000  -1.387 0.167660    
systemmanure_pest:year2019   -3.650      4.993 141.000  -0.731 0.465990    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation matrix not shown by default, as p = 48 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it


> summary(m3)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: yield ~ system + (1 | year) + (1 | year:system) + (1 | year:type) +      (1 | year:row)
   Data: data

REML criterion at convergence: 1241.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.3528 -0.5194  0.0820  0.5278  2.5522 

Random effects:
 Groups      Name        Variance Std.Dev.
 year:system (Intercept) 12.001   3.464   
 year:row    (Intercept)  2.254   1.501   
 year:type   (Intercept) 50.459   7.103   
 year        (Intercept)  0.000   0.000   
 Residual                26.453   5.143   
Number of obs: 192, groups:  year:system, 48; year:row, 32; year:type, 16; year, 8

Fixed effects:
                  Estimate Std. Error      df t value Pr(>|t|)    
(Intercept)        53.2375     2.9504 20.2592  18.044 5.93e-14 ***
systemcc_pest      56.3094     4.1555 19.9300  13.550 1.62e-11 ***
systemdgst_org      9.7437     2.1572 28.3095   4.517 0.000102 ***
systemfmyd_org     -0.9781     2.1572 28.3095  -0.453 0.653703    
systemmanure_org    1.3750     2.1572 28.3095   0.637 0.528989    
systemmanure_pest  56.8906     4.1555 19.9300  13.690 1.35e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) systmc_ systmd_ systmf_ systmmnr_r
systmcc_pst -0.704                                   
systmdgst_r -0.366  0.260                            
systmfmyd_r -0.366  0.260   0.500                    
systmmnr_rg -0.366  0.260   0.500   0.500            
systmmnr_ps -0.704  0.865   0.260   0.260   0.260    
convergence code: 0
boundary (singular) fit: see ?isSingular

#The Post Hoc Tests
> emmeans(m0, list(pairwise ~ system), adjust = "tukey") 
$`emmeans of system`
 system      emmean   SE   df lower.CL upper.CL
 cc_org        53.2 1.82 26.8     48.1     58.4
 cc_pest      109.5 1.82 26.8    104.4    114.7
 dgst_org      63.0 1.82 26.8     57.8     68.2
 fmyd_org      52.3 1.82 26.8     47.1     57.4
 manure_org    54.6 1.82 26.8     49.4     59.8
 manure_pest  110.1 1.82 26.8    104.9    115.3

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: sidak method for 6 estimates 

$`pairwise differences of system`
 contrast                 estimate   SE  df t.ratio p.value
 cc_org - cc_pest          -56.309 2.33 183 -24.211 <.0001 
 cc_org - dgst_org          -9.744 2.33 183  -4.189 0.0006 
 cc_org - fmyd_org           0.978 2.33 183   0.421 0.9983 
 cc_org - manure_org        -1.375 2.33 183  -0.591 0.9915 
 cc_org - manure_pest      -56.891 2.33 183 -24.461 <.0001 
 cc_pest - dgst_org         46.566 2.33 183  20.021 <.0001 
 cc_pest - fmyd_org         57.288 2.33 183  24.631 <.0001 
 cc_pest - manure_org       54.934 2.33 183  23.620 <.0001 
 cc_pest - manure_pest      -0.581 2.33 183  -0.250 0.9999 
 dgst_org - fmyd_org        10.722 2.33 183   4.610 0.0001 
 dgst_org - manure_org       8.369 2.33 183   3.598 0.0054 
 dgst_org - manure_pest    -47.147 2.33 183 -20.271 <.0001 
 fmyd_org - manure_org      -2.353 2.33 183  -1.012 0.9136 
 fmyd_org - manure_pest    -57.869 2.33 183 -24.881 <.0001 
 manure_org - manure_pest  -55.516 2.33 183 -23.869 <.0001 

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 

> emmeans(m1, list(pairwise ~ system), adjust = "tukey") 
$`emmeans of system`
 system      emmean   SE   df lower.CL upper.CL
 cc_org        53.2 3.03 28.3     44.7     61.8
 cc_pest      109.5 3.03 28.3    101.0    118.1
 dgst_org      63.0 3.03 28.3     54.4     71.5
 fmyd_org      52.3 3.03 28.3     43.7     60.8
 manure_org    54.6 3.03 28.3     46.0     63.2
 manure_pest  110.1 3.03 28.3    101.6    118.7

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: sidak method for 6 estimates 

$`pairwise differences of system`
 contrast                 estimate   SE df t.ratio p.value
 cc_org - cc_pest          -56.309 3.55 35 -15.851 <.0001 
 cc_org - dgst_org          -9.744 3.55 35  -2.743 0.0919 
 cc_org - fmyd_org           0.978 3.55 35   0.275 0.9998 
 cc_org - manure_org        -1.375 3.55 35  -0.387 0.9988 
 cc_org - manure_pest      -56.891 3.55 35 -16.015 <.0001 
 cc_pest - dgst_org         46.566 3.55 35  13.108 <.0001 
 cc_pest - fmyd_org         57.288 3.55 35  16.126 <.0001 
 cc_pest - manure_org       54.934 3.55 35  15.464 <.0001 
 cc_pest - manure_pest      -0.581 3.55 35  -0.164 1.0000 
 dgst_org - fmyd_org        10.722 3.55 35   3.018 0.0494 
 dgst_org - manure_org       8.369 3.55 35   2.356 0.1998 
 dgst_org - manure_pest    -47.147 3.55 35 -13.272 <.0001 
 fmyd_org - manure_org      -2.353 3.55 35  -0.662 0.9849 
 fmyd_org - manure_pest    -57.869 3.55 35 -16.290 <.0001 
 manure_org - manure_pest  -55.516 3.55 35 -15.628 <.0001 

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 

> emmeans(m2, list(pairwise ~ system), adjust = "tukey") 
NOTE: Results may be misleading due to involvement in interactions
$`emmeans of system`
 system      emmean   SE   df lower.CL upper.CL
 cc_org        53.2 1.31 7.65     48.6     57.9
 cc_pest      109.5 1.31 7.65    104.9    114.2
 dgst_org      63.0 1.31 7.65     58.4     67.6
 fmyd_org      52.3 1.31 7.65     47.6     56.9
 manure_org    54.6 1.31 7.65     50.0     59.2
 manure_pest  110.1 1.31 7.65    105.5    114.7

Results are averaged over the levels of: year 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: sidak method for 6 estimates 

$`pairwise differences of system`
 contrast                 estimate   SE  df t.ratio p.value
 cc_org - cc_pest          -56.309 1.25 141 -45.109 <.0001 
 cc_org - dgst_org          -9.744 1.25 141  -7.806 <.0001 
 cc_org - fmyd_org           0.978 1.25 141   0.784 0.9699 
 cc_org - manure_org        -1.375 1.25 141  -1.102 0.8800 
 cc_org - manure_pest      -56.891 1.25 141 -45.575 <.0001 
 cc_pest - dgst_org         46.566 1.25 141  37.304 <.0001 
 cc_pest - fmyd_org         57.288 1.25 141  45.893 <.0001 
 cc_pest - manure_org       54.934 1.25 141  44.008 <.0001 
 cc_pest - manure_pest      -0.581 1.25 141  -0.466 0.9972 
 dgst_org - fmyd_org        10.722 1.25 141   8.589 <.0001 
 dgst_org - manure_org       8.369 1.25 141   6.704 <.0001 
 dgst_org - manure_pest    -47.147 1.25 141 -37.769 <.0001 
 fmyd_org - manure_org      -2.353 1.25 141  -1.885 0.4156 
 fmyd_org - manure_pest    -57.869 1.25 141 -46.359 <.0001 
 manure_org - manure_pest  -55.516 1.25 141 -44.474 <.0001 

Results are averaged over the levels of: year 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 

> emmeans(m3, list(pairwise ~ system), adjust = "tukey") 
$`emmeans of system`
 system      emmean   SE   df lower.CL upper.CL
 cc_org        53.2 2.95 19.9     44.6     61.9
 cc_pest      109.5 2.95 19.9    100.9    118.2
 dgst_org      63.0 2.95 19.9     54.4     71.6
 fmyd_org      52.3 2.95 19.9     43.6     60.9
 manure_org    54.6 2.95 19.9     46.0     63.2
 manure_pest  110.1 2.95 19.9    101.5    118.7

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: sidak method for 6 estimates 

$`pairwise differences of system`
 contrast                 estimate   SE   df t.ratio p.value
 cc_org - cc_pest          -56.309 4.16 10.1 -13.550 <.0001 
 cc_org - dgst_org          -9.744 2.16 28.0  -4.517 0.0013 
 cc_org - fmyd_org           0.978 2.16 28.0   0.453 0.9973 
 cc_org - manure_org        -1.375 2.16 28.0  -0.637 0.9871 
 cc_org - manure_pest      -56.891 4.16 10.1 -13.690 <.0001 
 cc_pest - dgst_org         46.566 4.16 10.1  11.206 <.0001 
 cc_pest - fmyd_org         57.288 4.16 10.1  13.786 <.0001 
 cc_pest - manure_org       54.934 4.16 10.1  13.220 <.0001 
 cc_pest - manure_pest      -0.581 2.16 28.0  -0.269 0.9998 
 dgst_org - fmyd_org        10.722 2.16 28.0   4.970 0.0004 
 dgst_org - manure_org       8.369 2.16 28.0   3.879 0.0069 
 dgst_org - manure_pest    -47.147 4.16 10.1 -11.346 <.0001 
 fmyd_org - manure_org      -2.353 2.16 28.0  -1.091 0.8809 
 fmyd_org - manure_pest    -57.869 4.16 10.1 -13.926 <.0001 
 manure_org - manure_pest  -55.516 4.16 10.1 -13.359 <.0001 

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
0个回答
没有发现任何回复~