再次感谢 @StéphaneLaurent 和 @user777 在评论中提供的宝贵意见。在对之前的进行一些调整之后λ我现在可以复制 Raftery (1988) 论文的结果。
这是我使用 JAGS 和 R 的分析脚本和结果:
#===============================================================================================================
# Load packages
#===============================================================================================================
sapply(c("ggplot2"
, "rjags"
, "R2jags"
, "hdrcde"
, "runjags"
, "mcmcplots"
, "KernSmooth"), library, character.only = TRUE)
#===============================================================================================================
# Model file
#===============================================================================================================
cat("
model {
# Likelihood
for (i in 1:N) {
x[i] ~ dbin(theta, n)
}
# Prior
n ~ dpois(mu)
lambda ~ dgamma(0.005, 0.005)
# lambda ~ dunif(0, 1000)
mu <- lambda/theta
theta ~ dunif(0, 1)
}
", file="jags_model_binomial.txt")
#===============================================================================================================
# Data
#===============================================================================================================
data.list <- list(x = c(53, 57, 66, 67, 72, NA), N = 6) # Waterbuck example from Raftery (1988)
#===============================================================================================================
# Inits
#===============================================================================================================
jags.inits <- function() {
list(
n = sample(max(data.list$x, na.rm = TRUE):1000, size = 1)
, theta = runif(1, 0, 1)
, lambda = runif(1, 1, 10)
# , cauchy = runif(1, 1, 1000)
# , mu = runif(1, 0, 5)
)
}
#===============================================================================================================
# Run the chains
#===============================================================================================================
# Parameters to store
params <- c("n"
, "theta"
, "lambda"
, "mu"
, paste("x[", which(is.na(data.list[["x"]])), "]", sep = "")
)
# MCMC settings
niter <- 500000 # number of iterations
nburn <- 20000 # number of iterations to discard (the burn-in-period)
nchains <- 5 # number of chains
# Run JAGS
out <- jags(
data = data.list
, parameters.to.save = params
, model.file = "jags_model_binomial.txt"
, n.chains = nchains
, n.iter = niter
, n.burnin = nburn
, n.thin = 50
, inits = jags.inits
, progress.bar = "text")
在我的台式电脑上计算大约需要 98 秒。
#===============================================================================================================
# Inspect results
#===============================================================================================================
print(out
, digits = 2
, intervals = c(0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975))
结果是:
Inference for Bugs model at "jags_model_binomial.txt", fit using jags,
5 chains, each with 5e+05 iterations (first 20000 discarded), n.thin = 50
n.sims = 48000 iterations saved
mu.vect sd.vect 2.5% 10% 25% 50% 75% 90% 97.5% Rhat n.eff
lambda 62.90 5.18 53.09 56.47 59.45 62.74 66.19 69.49 73.49 1 48000
mu 521.28 968.41 92.31 113.02 148.00 232.87 467.10 1058.17 3014.82 1 1600
n 521.73 968.54 95.00 114.00 148.00 233.00 467.00 1060.10 3028.00 1 1600
theta 0.29 0.18 0.02 0.06 0.13 0.27 0.42 0.55 0.66 1 1600
x[6] 63.03 7.33 49.00 54.00 58.00 63.00 68.00 72.00 78.00 1 36000
deviance 34.88 1.53 33.63 33.70 33.85 34.34 35.34 36.81 39.07 1 48000
的后验均值N是522并且后中位数是233. 我计算了后验模式N在对数尺度上并对估计值进行反向转换:
jagsfit.mcmc <- as.mcmc(out)
jagsfit.mcmc <- combine.mcmc(jagsfit.mcmc)
hpd.80 <- hdr.den(log(as.vector(jagsfit.mcmc[, "n"])), prob = c(80), den = bkde(log(as.vector(jagsfit.mcmc[, "n"])), gridsize = 10000))
exp(hpd.80$mode)
[1] 149.8161
以及 80%-HPDN是:
(hpd.ints <- HPDinterval(jagsfit.mcmc, prob = c(0.8)))
lower upper
deviance 33.61011007 35.677810
lambda 56.08842502 69.089507
mu 72.42307587 580.027182
n 78.00000000 578.000000
theta 0.01026193 0.465714
x[6] 53.00000000 71.000000
后验模式为N是150并且 80%-HPD 是(78;578)这非常接近论文中给出的限制,即(80;598).