我有 1771 个观察值,其中 30% 的 x1 缺失数据(是:否),并且 26 个其他变量(连续变量和因子的混合)中没有其他缺失值。
我在 R 中使用分位数回归,有和没有输入 x1 的值。y ~ X1 的参数估计值相似,但 SE 实际上比使用估算数据估计的模型更小。无论百分位数如何,这似乎都是正确的。我确实做错了什么(我倾向于这个方向)还是在合理的情况下会发生这种情况?很高兴提供更多细节。非常感谢。
library(rms)
imputes <- aregImpute(formula, data, n.impute = 100, tlinear = FALSE, nk = 5)
> qrtest # WITH IMPUTATION
Quantile Regression tau: 0.5
fit.mult.impute(formula = y ~ x1, fitter = Rq, xtrans = imputes,
data = workDf, tau = 0.5)
Coef S.E. t Pr(>|t|)
Intercept 3560.0000 21.9590 162.12 <0.0001
x1=Yes -170.0000 29.7172 -5.72 <0.0001
> summary(qrtest2) # NO IMPUTATION
Call: rq(formula = y ~ x1, tau = 0.5, data = workDf)
tau: [1] 0.5
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 3600.00000 27.94167 128.83985 0.00000
x1 -200.00000 36.46074 -5.48535 0.00000
注1:
也许是一个线索,从这里
fit.mult.impute 警告用户,当拟合例程不是来自 rms 时,标准误差和显着性检验仅基于最后拟合的模型
虽然没有这样的警告,因为它使用 Rq 而不是 rq 作为装配工。此外,按照建议的匹配计算 SE。
注 2:使用 rms::ols 进行插补会导致更大的SE,正如预期的那样,比没有插补的 ols。
注 3:这不是使用不同标准误差的结果。