我是一个刚刚学习DSP的人,想了解它的本质。我的变换是最简单的。输入信号只是一个频率:$256\textrm{ Hz}$。采样频率为$2560\textrm{samples/sec}$,所以$10\textrm{samples}$对应一个周期(周期)。我将它与两个测试频率相关联:一个等于输入,另一个是它的两倍:$2\cdot 256\textrm{ Hz} = 512\textrm{ Hz}$。我只关联了 $10\textrm{ samples}$,所以相关性没有移动。. Sampling frequency is , so correspond to one cycle (period). I correlate it with two testing frequencies: one equal to input and other double of it: . I correlate only so correlation is not moving.
第一个相关性:输入样本在第一列,测试频率(相等)在第二列:
0 x 0 = 0 0.587785252292 x 0.587785252292 = 0.345491502812 0.951056516295 x 0.951056516295 = 0.904508497187 0.951056516295 x 0.951056516295 = 0.904508497187 0.587785252292 x 0.587785252292 = 0.345491502812 0 x 0 = 0 -0.587785252292 x -0.587785252292 = 0.345491502812 -0.951056516295 x -0.951056516295 = 0.904508497187 -0.951056516295 x -0.951056516295 = 0.904508497187 -0.587785252292 x -0.587785252292 = 0.345491502812 产品总和(平方)= 5
因为每个实数的平方都是正数,所以总和是大数。除以 10 美元得到 0.5 美元。鉴于它是正弦乘积的平均值是显着数字,所以我得出结论频率 $256\textrm{ Hz}$ 确实存在于信号中。 yields . Given that it is mean of products of sines is significant number, so I conclude frequency does exist in the signal.2 相关性。输入样本在第一列,测试频率在第二列:
0 x 0 = 0 0.587785252292 x 0.951056516295 = 0.559016994374 0.951056516295 x 0.587785252292 = 0.559016994374 0.951056516295 x -0.587785252292 = -0.559016994374 0.587785252292 x -0.951056516295 = -0.559016994374 0 x 0 = 0 -0.587785252292 x 0.951056516295 = -0.559016994374 -0.951056516295 x 0.587785252292 = -0.559016994374 -0.951056516295 x -0.587785252292 = 0.559016994374 -0.587785252292 x -0.951056516295 = 0.559016994374 产品总和 = 0
因为一半产品与另一半相对,所以总和为 0 美元。这意味着信号中不存在频率 $512\textrm{ Hz}$。. It means frequency does not exist in the signal.
我的问题:这就是 DFT 的本质吗?