以下是我使用单独的 HPF (c2d)) 和 LPF (MIM) 准备的 5 阶和 6 阶滤波器 (fs=48kHz) 的系数:
四阶 HPF,一阶 LPF:
[0.588402730019084 -2.114578549207340 2.574286896638522 -0.919416694862366 -0.367726753456895 0.239032370868995]
[1.0 -4.193437345479311 6.853084418397484 -5.397323870680988 2.009149234848459 -0.271472430592242]
四阶 HPF,二阶 LPF:
[[0.5884027300190836 -1.6384145461593100 0.8580879826180272 1.1837389307393180 -1.1416401766192728 -0.0386320187694699 0.1884570981716236]
[1.0 -3.384188885614779 3.453610828634393 0.171625555633360 -2.392296872830998 1.376227862809258 -0.224978476938553]
以及与他们的模拟模型进行比较的图表:
(绿色 = 模拟模型,红色 = 5 阶滤波器,黑色 = 6 阶滤波器,小窗口显示接近 Nyqvist 频率时的响应差异)
编辑2:
这是构建过滤器的 Octave 源代码:
% Octave packages -------------------------------
pkg load signal
% other requirements:
% Magnitude Invariance method (MIM) -implementation ( one implementation can be found from https://soar.wichita.edu/handle/10057/1564 )
clf;
format long;
%Sampling Rate
Fs = 44100;
% A-weighting filter frequencies according to IEC/CD 1672.
% Source: https://www.dsprelated.com/showcode/214.php
f1 = 20.598997;
f2 = 107.65265;
f3 = 737.86223;
f4 = 12194.217;
% Analog model -----------------------------------------------------
A1000 = 1.9997;
NUM = [ (2*pi*f4)^2*(10^(A1000/20)) 0 0 0 0];
DEN = conv([1 +4*pi*f4 (2*pi*f4)^2],[1 +4*pi*f1 (2*pi*f1)^2]);
DEN = conv(conv(DEN,[1 2*pi*f3]),[1 2*pi*f2]);
Ds = tf(NUM, DEN);
[Ab, Aa, T] = tfdata(Ds, 'v');
% Digital filter --------------------------------------------------
%LPF1 (MIM method)
lporder = 1; % 1 = 5th order A-Weighting filter, 2= 6th order ....
w0 = 2 * pi * f4;
bC = 1;
aC = [1 w0];
AD0 = tf(bC, aC);
LP2 = c2dn(AD0^2, 1/Fs, 'mim', lporder, 4096^2, 'lowpass');
% HPF (BLT method)
% HPF1
w0 = 2 * pi * f1;
bC = [w0 0];
aC = [1 w0];
AD1 = tf(bC, aC);
HP1 = c2d(AD1^2, 1/Fs, 'tustin');
% HPF2
w0 = 2 * pi * f2;
bC = [w0 0];
aC = [1 w0];
AD2 = tf(bC, aC);
HP2 = c2d(AD2, 1/Fs, 'tustin');
% HPF3
w0 = 2 * pi * f3;
bC = [w0 0];
aC = [1 w0];
AD3 = tf(bC, aC);
HP3 = c2d(AD3, 1/Fs, 'tustin');
% Combine filters
FLT = (LP2*HP1*HP2*HP3);
% Adjust 0dB@1kHz
GAINoffset = abs(freqresp(FLT,1000*2*pi));
FLT = FLT/GAINoffset;
% get coefficients
[ad, bd, T] = tfdata(FLT, 'v');
ad
bd
% plot
fs2 = Fs/2;
nf = logspace(0, 5, fs2);
[mag, pha] = bode(Ds,2*pi*nf);
semilogx(nf, 20*log10(abs(mag)), 'color', 'g', 'linewidth', 4.0, 'linestyle', '-');
hold on;
[mag, pha] = bode(FLT,2*pi*nf);
semilogx(nf, 20*log10(abs(mag)), 'color', 'k', 'linewidth', 2.0, 'linestyle', '--');
title('A-Weighting filter');
xlabel('Hz');ylabel('dB');
axis([1 fs2+5000 -200 10]);
legend('Analog model', 'Digital (MIM+BLT)', 'location', 'southeast');
grid on;
我没有测量误差曲线(不知道如何根据模拟模型计算它)。
EDIT1:显示低采样率(4、8、16、32 kHz)的高频响应的图: