s平面原点的极点Q是多少?

信息处理 零极点 品质因数
2022-02-22 13:32:09

我正在用 Python 编写一个简单的函数来返回电路的 Q,给定它的极点。

具有极点 p 的系统的 Q 可以使用Q=|p|2Re(p). 显然,在自然系统中,这样的极点必须是一对的一部分,并且两者都会产生相同的结果。

对于实轴上的重合极点,这给出了 1/2 的 Q(临界阻尼)。对于虚轴上的极点,Q 为(无阻尼)。

为了完整性,编写函数给我留下了一个问题,即如果极点位于原点,该怎么办。是否有一个习惯值可以分配给原点的极点?


背景材料:

对于任何对将极点位置与 Q 相关的方程的来源感兴趣的人,它来自二阶传递函数:

(来源)

此处以图形方式描述:

(来源)

在这里也可以找到关于二阶系统中 Q 和阻尼的体面讨论:

(来源)

这很好地回顾了磁极放置如何对应于各种阻尼特性。

1个回答

请注意,您的问题中给出的公式对于具有复共轭极对的系统有效ppRe(p)0. 正如您正确指出的那样,如果|p|>0真实的部分Re(p)接近零时,Q因子接近无穷大。这是一个极对上的情况jω-轴与|p|>0,即不在s=0.

另请注意,您不能将该公式用于两个不同的实值极点。这种情况对应于一个过阻尼系统Q<12.

双极的问题s=0是没有合理的方法来评估您问题中给出的公式。不存在对应的限制。

说了这么多,我们可以想到一个合理的定义Q对于双极的情况s=0. 为了p=p=0相应系统的传递函数是(假设没有有限零)

(1)H(s)=As2

有一些常数A. 脉冲响应为

(2)h(t)=L1{H(s)}=Atu(t)

我们必须问自己我们的意思是什么Q在这种情况下。由于阻尼为零,您可以说Q=. 我还没有遇到过的定义Q在双实极的情况下s=0,我认为对于这种退化的情况,不可能有任何有用的定义。如果我必须决定一个价值,我会说Q=,类似于上的所有其他极对jω-轴。