这个系统是 LTI 吗?

信息处理 线性系统 z变换
2022-02-22 20:31:05

假设系统是 LTI(并且具有关联的变换),那么整个系统是否低于 LTI?h[n]H(z)

我找到了系统的脉冲响应,我得到它是 其中

h0[n]=αnh[n]
h0[n]y[n]x[n]=δ[n]

这并没有给我们太多信息,所以我想用输入信号为复指数(即)来测试系统。因为复指数是 LTI 系统的特征函数,如果输出不是像那么系统就不是 LTI。x[n]=any[n]=znH(z)

但是,的输出结果是x[n]=an

y[n]=anH(aα)

因此,显然,复指数是整个系统的特征函数。另外,我认为是对的吗?H0(z)=H(zα)

这足以确认整个系统LTI 吗?或者它只是证明它可能是 LTI?

感谢您的时间!

1个回答

您是对的,除非系统是 LTI,否则确定对脉冲的响应通常不会导致对系统行为的任何有用描述。您使用特征函数的推理是正确的。但是,我将按如下方式处理该问题。如果(且仅当)输入/输出关系可以表述为输入信号与独立于输入信号(脉冲响应)的序列的卷积,则系统是 LTI。这确实是可能的:

(1)y[n]=αnk=x[k]αkh[nk]=k=x[k]α(nk)h[nk]=k=x[k]h~[nk]

其中是整个系统的脉冲响应,正如您自己已经发现的那样。h~[n]=αnh[n]

-变换确实很容易用表示:Zh~[n]H(z)

H~(z)=n=h~[n]zn=n=h[n]αnzn=H(αz)